Synlett 2023; 34(14): 1704-1708
DOI: 10.1055/a-2041-5287
letter

Base-Promoted Formal (2+1) Cycloaddition of Benzofuran-Derived Oxadienes with Bromomalonates

Chen Zhong
a   School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China
,
Xue Wang
a   School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China
,
Si-Jia Liu
a   School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China
,
Man-Su Tu
b   Analysis and Testing Center, Jiangsu Normal University, Xuzhou, 221116, P. R. of China
,
Yu-Chen Zhang
a   School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China
› Author Affiliations
This work was supported by NSFC (22125104), the Natural Science Foundation of Jiangsu Province (BK20201018), the Natural Science Foundation of Xuzhou City (KC21021), the High Education Natural Science Foundation of Jiangsu Province (22KJB150024), Natural Science Foundation of JSNU (21XSRX010), and Undergraduate Students Project of Jiangsu Province (202110320041Z).


Abstract

A base-promoted formal (2+1) cycloaddition of benzofuran-derived oxadienes with bromomalonates was established that afforded benzofuranone-based spirocyclopropanes in generally good yields (up to 98%) and high diastereoselectivities (up to 91:9 dr). This reaction is the first highly diastereoselective formal (2+1) cycloaddition of benzofuran-derived oxadienes, and will contribute to the chemistry of these compounds. In addition, this approach provides an atom-economic and useful protocol for constructing benzofuranone-based spiro skeletons.

Supporting Information



Publication History

Received: 19 January 2023

Accepted after revision: 23 February 2023

Accepted Manuscript online:
23 February 2023

Article published online:
13 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For some reviews, see:
    • 1a Hiremathad A, Patil MR, Chethana KR, Chand K, Santos MA, Keri RS. RSC Adv. 2015; 5: 96809
    • 1b Xu Z, Zhao S, Lv Z, Feng L, Wang Y, Zhang F, Bai L, Deng J. Eur. J. Med. Chem. 2019; 162: 266
    • 1c Miao Y.-H, Hu Y.-H, Yang J, Liu T, Sun J, Wang X.-J. RSC Adv. 2019; 9: 27510
    • 1d Farhat J, Alzyoud L, Alwahsh M, Al-Omari B. Cancers 2022; 14: 2196
  • 2 El-Sharkawy KA, AlBratty M, AlHazmi HA, Najmi A. Open Chem. 2022; 20: 1250
  • 3 Couturier C, Bauer A, Rey A, Schroif-Dufour C, Broenstrup M. Bioorg. Med. Chem. Lett. 2012; 22: 6292
  • 4 Watanabe M, Kawada M, Hirata T, Maki Y, Imada I. Chem. Pharm. Bull. 1984; 32: 3551
  • 5 Li Q.-M, Luo J.-G, Zhang Y.-M, Li Z.-R, Wang X.-B, Yang M.-H, Luo J, Sun H.-B, Chen Y.-J, Kong L.-Y. Chem. Eur. J. 2015; 21: 13206
  • 6 Zhang J, Ma K, Chen H, Wang K, Xiong W, Bao L, Liu H. J. Antibiot. 2017; 70: 915

    • For some reviews on the construction of benzofuranone-based spiro skeletons, see:
    • 7a Chiummiento L, D’Orsi R, Funicello M, Lupattelli P. Molecules 2020; 25: 2327
    • 7b Zhang Z, Jiang X, Li Q. Youji Huaxue 2022; 42: 945
    • 7c Dwarakanath D, Gaonkar SL. Asian J. Org. Chem. 2022; 11: e202200282

    • For some recent reviews on the construction of spiro skeletons, see:
    • 7d Wang Y, Cobo AA, Franz AK. Org. Chem. Front. 2021; 8: 4315
    • 7e Yang J, Pan B.-W, Chen L, Zhou Y, Liu X.-L. Chem. Synth. 2023; 3: 7 DOI: 10.20517/cs.2022.38.
  • 8 For a review, see: Deng Q, Meng X. Chem. Asian J. 2020; 15: 2838

    • For some selected examples of the construction of benzofuranone-based spirocyclopentane skeletons, see:
    • 9a Shanmugasundaram M, Raghunathan R. Tetrahedron 2000; 56: 5241
    • 9b Wang M, Rong Z.-Q, Zhao Y. Chem. Commun. 2014; 50: 15309
    • 9c Guo C, Schedler M, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10232
    • 9d Ni H, Yu Z, Yao W, Lan Y, Ullahe N, Lu Y. Chem. Sci. 2017; 8: 5699
    • 9e Yang Y, Jiang Y, Du W, Chen Y.-C. Chem. Eur. J. 2020; 26: 1754
    • 9f Su Y, Feng Y, Cao L, Xue W, Shi Y, Chang B, Huang D, Wang K.-H, Hu Y. Youji Huaxue 2019; 39: 1333
    • 9g Liu B.-X, Yan R.-J, Li X.-X, Du W, Chen Y.-C. Asian J. Org. Chem. 2021; 10: 784
    • 9h Lin H, Gu J, Luo S, Gu Q, Cao X, Ge Y, Wang C, Yuan C, Wang H. ChemistrySelect 2022; 7: e202201599

      For some selected examples of the construction of benzofuranone-based spiropyrrole skeletons, see:
    • 10a Lévai A, Patonay T. J. Heterocycl. Chem. 1999; 36: 747
    • 10b Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS. Bioorg. Med. Chem. Lett. 2013; 23: 1383
    • 10c Zhang C.-B, Dou P.-H, Zhang J, Wei Q.-Q, Wang Y.-B, Zhu JY, Fu J.-Y, Ding T. ChemistrySelect 2016; 1: 4403
    • 10d Kowalczyk D, Wojciechowski J, Albrecht Ł. Synthesis 2017; 49: 880
    • 10e Wang Z.-P, Xiang S, Shao P.-L, He Y. J. Org. Chem. 2018; 83: 10995
    • 10f Du T, Li Z, Zheng C, Fang G, Yu L, Liu J, Zhao G. Tetrahedron 2018; 74: 7485
    • 10g Li B, Gao F, Feng X, Sun M, Guo Y, Wen D, Deng Y, Huang J, Wang K, Yan W. Org. Chem. Front. 2019; 6: 1567
    • 10h Wang R.-L, Jia S.-K, Guo Y.-J, Yi Y, Hua Y.-Z, Lu H.-J, Wang M.-C. Org. Biomol. Chem. 2021; 19: 8492
  • 11 For some selected examples of the construction of benzofuranone-based spirofuran skeletons, see: Yang L.-C, Tan ZY, Rong Z.-Q, Liu R, Wang Y.-N, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 7860
  • 12 For some selected examples of the construction of benzofuranone-based spirothiophene skeletons, see: Kowalczyk D, Wojciechowski J, Albrecht Ł. Tetrahedron Lett. 2016; 57: 2533

    • For some recent examples, see:
    • 13a Li T.-Z, Liu S.-J, Sun Y.-W, Deng S, Tan W, Jiao Y, Zhang Y.-C, Shi F. Angew. Chem. Int. Ed. 2021; 60: 2355
    • 13b Chen K.-W, Chen Z.-H, Yang S, Wu S.-F, Zhang Y.-C, Shi F. Angew. Chem. Int. Ed. 2022; 61: e202116829
    • 13c Liu S.-J, Chen Z.-H, Chen J.-Y, Ni S.-F, Zhang Y.-C, Shi F. Angew. Chem. Int. Ed. 2022; 61: e202112226
    • 13d Hang Q.-Q, Wu S.-F, Yang S, Wang X, Zhong Z, Zhang Y.-C, Shi F. Sci. China Chem. 2022; 65: 1929
    • 13e Sun L.-X, Sun T.-T, Wang H.-Q, Wu S.-F, Wang X.-Y, Liu T.-Y, Zhang Y.-C. Youji Huaxue 2023; in press DOI: 10.6023/cjoc202210037.

      For some selected examples, see:
    • 14a Fang Q.-Y, Yi M.-H, Wu X.-X, Zhao L.-M. Org. Lett. 2020; 22: 5266
    • 14b Lian X.-L, Adili A, Liu B, Tao Z.-L, Han Z.-Y. Org. Biomol. Chem. 2017; 15: 3670
    • 14c Gai K, Fang X, Li X, Xu J, Wu X, Lin A, Yao H. Chem. Commun. 2015; 51: 15831
    • 14d Yuan Z, Gai K, Wu Y, Wu J, Lin A, Yao H. Chem. Commun. 2017; 53: 3485
  • 15 Spirobenzofurans 3; General Procedure The appropriate benzofuran-derived oxadiene 1 (0.2 mmol), bromomalonate 2 (0.4 mmol), and DBU (0.6 mmol) were added to a reaction tube. EtOH (1 mL) was then added and the mixture was stirred at 0 °C for 12 h. When the reaction was complete (TLC), the mixture was concentrated under a reduced pressure and the residue was purified by flash column chromatography [silica gel, PE–EtOAc (10:1)]. Diethyl 3-Oxo-3′-phenyl-2′H,3H-spiro[1-benzofuran-2,1′-cyclopropane]-2′,2′-dicarboxylate (3aa) White solid; yield: 98% (74.6 mg, 84:16 dr); mp 103.2–104.5 °C. IR (KBr): 3626, 1744, 1717, 1614, 1461, 1292, 1236, 1138, 871, 757 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 7.6 Hz, 1 H), 7.71–7.66 (m, 1 H), 7.40–7.29 (m, 6 H), 7.23–7.18 (m, 1 H), 4.37–4.24 (m, 2 H), 4.10 (q, J = 7.2 Hz, 2 H), 3.77 (s, 1 H), 1.30 (t, J = 7.2 Hz, 3 H), 1.10 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 194.1, 171.4, 164.4, 162.8, 137.7, 130.6, 129.6, 128.3, 127.8, 124.2, 123.0, 120.4, 113.9, 76.1, 62.4, 61.9, 47.3, 38.0, 14.0, 13.8. ESI FTMS: m/z [M – H] calcd for C22H19O6: 379.1187; found: 379.1172.
  • 16 CCDC 2235785 contains the supplementary crystallographic data for compound 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures . See also the Supporting Information for details.