Synthesis 2023; 55(18): 2943-2950
DOI: 10.1055/a-2050-9368
paper
Special Issue Electrochemical Organic Synthesis

Synthesis of Cyclopropylamines through an Electro-Induced Hofmann Rearrangement

Thomas Cantin
a   Normandie Univ., INSA Rouen Normandie, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
,
b   Université de Montréal, FRQ-NT Centre in Green Chemistry and Catalysis Department of Chemistry, 1375, av. Thérèse Lavoie-Roux, Montréal, QC H2 V 0B3, Canada
,
a   Normandie Univ., INSA Rouen Normandie, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
,
Philippe Jubault
a   Normandie Univ., INSA Rouen Normandie, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
› Author Affiliations
This work was partially supported by Normandie Université (NU), Région­ Normandie, the Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (URN), INSA Rouen Normandie­, Labex SynOrg (ANR-11-LABX-0029), the graduate school for research XL-Chem (ANR-18-EURE-0020 XLCHEM) and Innovation Chimie Carnot (I2C). This work is part of the EFLUX program supported by the European Union through the operational program FEDER/ FSE 2014-202.


Abstract

A practical access to cyclopropylamines from the corresponding amides is disclosed, according to an electro-induced Hofmann rearrangement. In an undivided cell under galvanostatic conditions, a panel of cyclopropyl amides was readily converted into the corresponding amines (17 examples, 23% to 94% yield). This reaction allowed an easy access to the versatile cyclopropylamines and is complementary to the existing methods.

Supporting Information



Publication History

Received: 27 January 2023

Accepted after revision: 09 March 2023

Accepted Manuscript online:
09 March 2023

Article published online:
25 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hofmann AW. Ber. Dtsch. Chem. Ges. 1881; 14: 2725
    • 2a Radhakrishna AS, Parham ME, Riggs RM, Loudon GM. J. Org. Chem. 1979; 44: 1746
    • 2b Lazbin IM, Koser GF. J. Org. Chem. 1986; 51: 2669
    • 2c Moriarty RM, Chany CJ. II, Vaid RK, Prakash O, Tuladhar SM. J. Org. Chem. 1993; 58: 2478
    • 2d Lansberg D, Kalesse M. Synlett 2010; 1104
    • 2e Yoshimura A, Lueltke MW, Zhankin VV. J. Org. Chem. 2012; 77: 2087
    • 2f Liu P, Wang Z.-M, Xu X.-M. Eur. J. Org. Chem. 2012; 1994
    • 2g Linuma M, Moriyama K, Togo KH. Tetrahedron 2013; 69: 2961
  • 3 Huang X, Keillor JW. Tetrahedron Lett. 1997; 38: 313
  • 4 Miyamoto K, Yamashita S, Narita S, Sakai Y, Hirano K, Saito T, Wang C, Ochiai M, Uchiyama M. Chem. Commun. 2017; 53: 9781
    • 5a Organic Electrochemistry . Hammerich O, Speiser B. CRC Press/Taylor and Francis; New York: 2016. 5th ed
    • 5b Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
    • 5c Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
    • 5d Yamamoto K, Kuriyama M, Onomura O. Acc. Chem. Res. 2020; 53: 105
    • 5e Cembellin S, Batanero B. Chem. Rec. 2021; 21: 2453
    • 5f Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
    • 5g Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 5h Mitsudo K, Kurimoto Y, Yoshioka K, Suga S. Chem. Rev. 2018; 118: 5985
    • 5i Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 5j Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 6a Shatskiy A, Lundberg H, Kärkäs MD. ChemElectroChem 2019; 6: 4067
    • 6b Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12375
    • 7a Shono T, Matsumura Y, Yamane S, Kashimura S. Chem. Lett. 1982; 565
    • 7b Matsumura Y, Maki T, Satoh Y. Tetrahedron Lett. 1997; 38: 8879
  • 8 Matsumura T, Satoh Y, Maki T, Onomura O. Electrochim. Acta 2000; 45: 3011
    • 9a Li L, Xue M, Yan X, Liu W, Xu K, Zhang S. Org. Biomol. Chem. 2018; 16: 4615
    • 9b For recent reviews on indirect electrosynthesis promoted by halogen mediators, see for example: Liu K, Song C, Lei A. Org. Biomol. Chem. 2018; 16: 2375
    • 9c See also: Lian F, Xu K, Zeng C. Chem. Rec. 2021; 21: 2290
  • 10 Talele TT. J. Med. Chem. 2016; 59: 8712
  • 11 Yeung K.-S, Beno BR, Parcella K, Bender JA, Grant-Young KA, Nickel A, Gunaga P, Anjanappa P, Bora RO, Selvakumar K, Rigat K, Wang Y.-K, Liu M, Lemm J, Mosure K, Sheriff S, Wan C, Witmer M, Kish K, Hanumegowda U, Zhuo X, Shu Y.-Z, Parker D, Haskell R, Ng A, Gao Q, Colston E, Raybon J, Grasela DM, Santone K, Gao M, Meanwell NA, Sinz M, Soars MG, Knipe JO, Roberts SB, Kadow JF. J. Med. Chem. 2017; 60: 4369
  • 12 Li ZR, Li Y, Lai JY, Tang J, Wang B, Lu L, Zhu G, Wu X, Xu Y, Qian PY. ChemBioChem 2015; 16: 1715
  • 13 Sokolova OO, Bower JF. Chem. Rev. 2021; 121: 80
    • 14a Chaplinski V, de Meijere A. Angew. Chem., Int. Ed. Engl. 1996; 35: 413
    • 14b Bertus P, Szymoniak J. Chem. Commun. 2001; 1792
    • 14c Wolan A, Six Y. Tetrahedron 2010; 66: 15
    • 14d de Meijere A, Chaplinski V, Winsel H, Kordes M, Stecker B, Gazizova V, Savchenko AI, Boese R, Schill F. Chem. Eur. J. 2010; 16: 13862
    • 14e Bertus P, Menant C, Tanguy C, Szymoniak J. Org. Lett. 2008; 10: 777
  • 15 Zhu C, Li J, Chen P, Wu W, Ren Y, Jiang H. Org. Lett. 2016; 18: 1470
  • 16 Cyr P, Côté-Raiche A, Bronner SM. Org. Lett. 2016; 18: 6448
  • 17 Moreau B, Charette AB. J. Am. Chem. Soc. 2005; 127: 18014
  • 18 Lindsay VN. G, Lin W, Charette AB. J. Am. Chem. Soc. 2009; 131: 16383
  • 19 Barluenga J, Aznar F, Gutiérrez I, García-Granda S, Llorca-Baragaño MA. Org. Lett. 2002; 4: 4273
  • 20 Tsai C.-C, Hsieh I.-L, Cheng T.-T, Tsai P.-K, Lin K.-W, Yan T.-H. Org. Lett. 2006; 8: 2261
    • 21a Gagnon A, St-Onge M, Little K, Duplessis M, Barabé F. J. Am. Chem. Soc. 2007; 129: 44
    • 21b Tsuritani T, Strotman NA, Yamamoto Y, Kawasaki M, Yasuda N, Mase T. Org. Lett. 2008; 10: 1653
  • 22 Sakae R, Matsuda N, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1228
    • 23a Arts NB. M, Klunder AJ. H, Zwanenburg B. Tetrahedron 1978; 34: 1271
    • 23b Ohno M, Tanaka H, Komatsu M, Ohshiro Y. Synlett 1991; 919
    • 23c Charette AB, Côté B. J. Am. Chem. Soc. 1995; 117: 12721
  • 24 Liu K, Cheng S.-J, Luo G, Ye Z.-S. Org. Lett. 2021; 23: 9309
  • 25 Du W, Gu Q, Li Z, Yang D. J. Am. Chem. Soc. 2015; 137: 1130
  • 26 West MS, Pia JE, Rousseaux SA. L. Org. Lett. 2022; 24: 5869
    • 27a Aelterman M, Sayes M, Jubault P, Poisson T. Chem. Eur. J. 2021; 27: 8277
    • 27b Biremond T, Jubault P, Poisson T. ACS Org. Inorg. Au. 2022; 2: 148
    • 27c Aelterman M, Biremond T, Jubault P, Poisson T. Chem. Eur. J. 2022; 28: e202202194
    • 27d Luan S, Castanheiro T, Poisson T. Adv. Synth. Catal. 2022; 364: 2741
    • 28a Pons A, Delion L, Poisson T, Charette AB, Jubault P. Acc. Chem. Res. 2021; 54: 2969
    • 28b Huang W.-S, Schlinquer C, Poisson T, Pannecoucke X, Charette AB, Jubault P. Chem. Eur. J. 2018; 24: 10339
    • 28c Bos M, Huang W.-S, Poisson T, Pannecoucke X, Charette AB, Jubault P. Angew. Chem. Int. Ed. 2017; 56: 13319
    • 28d Carminati DM, Decaens J, Couve-Bonnaire S, Jubault P, Fasan R. Angew. Chem. Int. Ed. 2021; 60: 7072
    • 28e Pons A, Decaens J, Najjar RN, Otog N, Arribat M, Couve-Bonnaire S, Sebban M, Coadou G, Oulyadi H, Speybrouck D, Iwasa S, Charette AB, Poisson T, Jubault P. ACS Omega 2022; 7: 4868
    • 28f Chen L, Le TM. T, Bouillon J.-P, Poisson T, Jubault P. Chem. Eur. J. 2022; 28: e202201254
  • 29 During the scale-up experiment, 10% of the α-substituted cyclopropyl methyl ester was isolated probably because of diffusion phenomenon in the reaction medium.
  • 30 Audic B, Cramer N. Org. Lett. 2020; 22: 5030