Synthesis 2023; 55(17): 2737-2741
DOI: 10.1055/a-2090-8316
paper

Synthesis of New Chelating Phosphines Containing an Aryl Chloride Group

a   Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
,
Daniel J. DiPrimio
a   Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
,
Stephen J. Tereniak
b   Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
,
a   Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
› Author Affiliations
This work was solely supported as part of the Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0021173.


Abstract

The syntheses of bidentate and tripodal phosphine ligands containing aryl chlorides were achieved in 4 and 7 steps respectively, starting from diethyl malonate.

Supporting Information



Publication History

Received: 30 March 2023

Accepted: 10 May 2023

Accepted Manuscript online:
10 May 2023

Article published online:
05 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
  • 2 Musina EI, Balueva AS, Karasik AA. Phosphines: Preparation, Reactivity and Applications, In: Organophosphorus Chemistry, Vol. 48. 2019: 1-63
    • 3a Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 3b Lipshultz JM, Li G, Radosevich AT. J. Am. Chem. Soc. 2021; 143: 1699
    • 4a Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 4b Ingoglia BT, Wagen CC, Buchwald SL. Tetrahedron 2019; 75: 4199
    • 4c Reetz MT. Angew. Chem. Int. Ed. 2008; 47: 2556
    • 4d Erre G, Enthaler S, Junge K, Gladiali S, Beller M. Coord. Chem. Rev. 2008; 252: 471
    • 5a Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Chem. Rev. 2020; 120: 6124
    • 5b Vondran J, Furst MR. L, Eastham GR, Seidensticker T, Cole-Hamilton DJ. Chem. Rev. 2021; 121: 6610
    • 5c van Leeuwen PW, Kamer PC, Reek JN, Dierkes P. Chem. Rev. 2000; 100: 2741
    • 5d Pascariu A, Iliescu S, Popa A, Ilia G. J. Organomet. Chem. 2009; 694: 3982
    • 5e Hierso JC, Amardeil R, Bentabet E, Broussier R, Gautheron B, Meunier P, Kalck P. Coord. Chem. Rev. 2003; 236: 143
    • 5f Bianchini C, Meli A, Peruzzini M, Vizza F, Zanobini F. Coord. Chem. Rev. 1992; 120: 193
    • 6a Stratakes BM, Wells KA, Kurtz DA, Castellano FN, Miller AJ. M. J. Am. Chem. Soc. 2021; 143: 21388
    • 6b Wilson AD, Newell RH, McNevin MJ, Muckerman JT, Rakowski DuBois M, DuBois DL. J. Am. Chem. Soc. 2006; 128: 358
    • 6c Helm ML, Stewart MP, Bullock RM, Rakowski DuBois M, DuBois DL. Science 2011; 333: 863
    • 6d Chen L, Wang M, Han K, Zhang P, Gloaguen F, Sun L. Energy Environ. Sci. 2014; 7: 329
    • 7a Slater S, Wagenknecht JH. J. Am. Chem. Soc. 2002; 106: 5367
    • 7b Francke R, Schille B, Roemelt M. Chem. Rev. 2018; 118: 4631
    • 7c Roy S, Sharma B, Pecaut J, Simon P, Fontecave M, Tran PD, Derat E, Artero V. J. Am. Chem. Soc. 2017; 139: 3685
    • 7d Konrath R, Sekine K, Jevtovikj I, Paciello RA, Hashmi AS. K, Schaub T. Green Chem. 2020; 22: 6464
  • 8 Chalkley MJ, Drover MW, Peters JC. Chem. Rev. 2020; 120: 5582
    • 9a Sabater S, Mata JA, Peris E. ACS Catal. 2014; 4: 2038
    • 9b Tian H. ChemSusChem 2015; 8: 3746
    • 9c Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Chem. Rev. 2022; 122: 16051
    • 9d Johnson SI, Blakemore JD, Brunschwig BS, Lewis NS, Gray HB, Goddard WA, Persson P. Phys. Chem. Chem. Phys. 2021; 23: 9921
    • 9e Ge A, Rudshteyn B, Videla PE, Miller CJ, Kubiak CP, Batista VS, Lian T. Acc. Chem. Res. 2019; 52: 1289
    • 9f Seo J, Pekarek RT, Rose MJ. Chem. Commun. 2015; 51: 13264
    • 10a Pekarek RT, Celio H, Rose MJ. Langmuir 2018; 34: 6328
    • 10b Li F, Basile VM, Pekarek RT, Rose MJ. ACS Appl. Mater. Interfaces 2014; 6: 20557
    • 11a Pujari SP, Filippov AD, Gangarapu S, Zuilhof H. Langmuir 2017; 33: 14599
    • 11b Bansal A, Li X, Yi SI, Weinberg WH, Lewis NS. J. Phys. Chem. B 2001; 105: 10266
    • 11c Bansal A, Li X, Lauermann I, Lewis NS, Yi SI, Weinberg WH. J. Am. Chem. Soc. 1996; 118: 7225
    • 12a O’Leary LE, Rose MJ, Ding TX, Johansson E, Brunschwig BS, Lewis NS. J. Am. Chem. Soc. 2013; 135: 10081
    • 12b Huck LA, Buriak JM. J. Am. Chem. Soc. 2012; 134: 489
    • 12c Kang OS, Bruce JP, Herbert DE, Freund MS. ACS Appl. Mater. Interfaces 2015; 7: 26959
    • 12d Huffman BL, Bein GP, Atallah H, Donley CL, Alameh RT, Wheeler JP, Durand N, Harvey AK, Kessinger MC, Chen CY, Fakhraai Z, Atkin JM, Castellano FN, Dempsey JL. ACS Appl. Mater. Interfaces 2023; 15: 984
    • 12e Lattimer JR. C, Brunschwig BS, Lewis NS, Gray HB. J. Phys. Chem. C 2013; 117: 27012
  • 13 Wu L, Eberhart M, Shan B, Nayak A, Brennaman MK, Miller AJ. M, Shao J, Meyer TJ. ACS Appl. Mater. Interfaces 2019; 11: 4560
    • 14a Pujari SP, Scheres L, Marcelis AT, Zuilhof H. Angew. Chem. Int. Ed. 2014; 53: 6322
    • 14b Tanaka M, Sawaguchi T, Kuwahara M, Niwa O. Langmuir 2013; 29: 6361
    • 14c Zhang F, Srinivasan MP. Langmuir 2004; 20: 2309
    • 15a Turlington MD, Brady MD, Meyer GJ. ACS Appl. Energy Materials 2020; 4: 745
    • 15b Brady MD, Troian-Gautier L, Sampaio RN, Motley TC, Meyer GJ. ACS Appl. Mater. Interfaces 2018; 10: 31312
    • 15c Brady MD, Sampaio RN, Wang D, Meyer TJ, Meyer GJ. J. Am. Chem. Soc. 2017; 139: 15612
    • 16a Brennan BJ, Gust D, Brudvig GW. Tetrahedron Lett. 2014; 55: 1062
    • 16b Materna KL, Jiang J, Crabtree RH, Brudvig GW. ACS Appl. Mater. Interfaces 2019; 11: 5602
    • 16c Materna KL, Rudshteyn B, Brennan BJ, Kane MH, Bloomfield AJ, Huang DL, Shopov DY, Batista VS, Crabtree RH, Brudvig GW. ACS Catal. 2016; 6: 5371
    • 17a DuBois DL.. Inorg. Chem. 2002; 23: 2047
    • 17b Schlimm A, Stucke N, Floser BM, Rusch T, Krahmer J, Nather C, Strunskus T, Magnussen OM, Tuczek F. Chem. Eur. J. 2018; 24: 10732
    • 17c Petersen F, Lautenschlager I, Schlimm A, Floser BM, Jacob H, Amirbeigiarab R, Rusch TR, Strunskus T, Magnussen O, Tuczek F. Dalton Trans. 2021; 50: 1042
    • 18a Tang X, Zhang D, Jie S, Sun W.-H, Chen J. J. Organomet. Chem. 2005; 690: 3918
    • 18b Chen R.-J, Fang J.-M. J. Chin. Chem. Soc. 2005; 52: 819
    • 18c Guarnizo A, Angurell I, Rossell MD, Llorca J, Muller G, Seco M, Rossell O. RSC Adv. 2015; 5: 91340
  • 19 Guo J, Xu C, Liu X, Wang M. Org. Biomol. Chem. 2019; 17: 2162
  • 20 Moore TO, Paradowski M, Ward SE. Org. Biomol. Chem. 2016; 14: 3307
  • 21 Hagens AP, Miller TS, Bynum RL, Kapila VP. J. Org Chem. 2002; 47: 1345
  • 22 Blasdel LK, Lee D, Sun B, Myers AG. Bioorg. Med. Chem. Lett. 2013; 23: 6905