Synlett 2023; 34(17): 2029-2033
DOI: 10.1055/a-2102-7006
letter

Decarboxylative Oxidation of Carboxylic Acids Using Photocatalysis and Copper Catalysis

Muhammad Kashif Zaman
,
Shah Nawaz Khan
,
Yuanyuan Cai
,
Zhankui Sun
We thank Shanghai Jiao Tong University for financial support.


Abstract

A decarboxylative oxidation of carboxylic acids was developed through visible-light-induced photocatalysis with molecular oxygen as a green oxidant and copper as a co-catalyst. This reaction worked smoothly on various type of acids, and could potentially be used in modifications of natural products. The high efficiency of this transformation was demonstrated on over 40 substrates.

Supporting Information



Publication History

Received: 25 April 2023

Accepted after revision: 30 May 2023

Accepted Manuscript online:
30 May 2023

Article published online:
20 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Boto A, Hernández R, Suárez E. J. Org. Chem. 2000; 65: 4930
    • 1b Boto A, Hernández R, Suárez E. Tetrahedron Lett. 2000; 41: 2899
    • 1c Itoh A, Kodama T, Inagaki S, Masaki Y. Org. Lett. 2000; 2: 331
    • 1d Favier I, Duñach E, Hébrault D, Desmurs J. New. J. Chem. 2004; 28: 62
    • 1e Habibia MH, Farhadib S. J. Chem. Res., Synop. 2004; 296
    • 1f Mirkhani V, Tangestaninejad S, Moghadam M, Moghbel M. Bioorg. Med. Chem. 2004; 12: 903
    • 1g Farhadi S, Zaringhadam P, Sahamieh RZ. Tetrahedron Lett 2006; 47: 1965
    • 1h Telvekar VN, Sasane KA. Synlett 2010; 2778
    • 1i Feng Q, Song Q. J. Org. Chem. 2014; 79: 1867
    • 1j Zhang P, Zhang L, Gao Y, Xu J, Fang H, Tang G, Zhao Y. Chem. Commun. 2015; 51: 7839
    • 1k Mete TB, Khopade TM, Bhat RG. Tetrahedron Lett 2017; 58: 2822
    • 1l Lechner R, Kümmela S, König B. Photochem. Photobiol. Sci. 2010; 9: 1367
    • 2a Leung JC. T, Chatalova-Sazepin C, West JG, Rueda-Becerril M, Paquin JF, Sammis GM. Angew. Chem. Int. Ed. 2012; 51: 10804
    • 2b Rueda-Becerril M, Mahé O, Drouin M, Majewski MB, West JG, Wolf MO, Sammis GM, Paquin JF. J. Am. Chem. Soc. 2014; 136: 2637
    • 2c Ventre S, Petronijevic FR, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 5654
    • 2d Wu X, Meng C, Yuan X, Jia X, Qian X, Ye J. Chem. Commun. 2015; 51: 11864
  • 3 Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
  • 4 Le Vaillant F, Courant T, Waser J. Angew. Chem. Int. Ed. 2015; 54: 11200
    • 5a Cassani C, Bergonzini G, Wallentin C.-J. Org. Lett. 2014; 16: 4228
    • 5b Griffin JD, Zeller MA, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
  • 6 Song H.-T, Ding W, Zhou Q.-Q, Liu J, Lu-Q L, Xiao W.-J. J. Org. Chem. 2016; 81: 7250
  • 7 Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 8a Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
    • 8b Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
    • 8c Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 9a Sakakibara Y, Cooper P, Murakami K, Itami K. Chem. Asian J. 2018; 13: 2410
    • 9b Faraggi TM, Li W, MacMillan DW. C. Isr. J. Chem. 2020; 60: 410
    • 9c Guan R, Bennett EL, Huang Z, Xiao J. Green Chem. 2022; 24: 2946
    • 9d Reichle A, Sterzel H, Kreitmeier P, Fayad R, Castellano FN, Rehbein J, Reiser O. Chem. Commun 2022; 58: 4456
    • 9e Tu J.-L, Gao H, Luo M, Zhao L, Yang C, Guo L, Xia W. Green Chem 2022; 24: 5553
  • 10 Li R, Dong Y, Khan SN, Zaman MK, Zhou J, Miao P, Hu L, Sun Z. Nat. Commun. 2022; 13: 7061
    • 11a Shirase S, Tamaki S, Shinohara K, Hirosawa K, Tsurugi H, Satoh T, Mashima K. J. Am. Chem. Soc 2020; 142: 5668
    • 11b Meng X, Xu H, Zheng Y, Luo J, Huang S. ACS Sustainable Chem. Eng. 2022; 10: 5067
  • 12 Photocatalytic Decarboxylation: General Procedure A 25 mL round-bottom flask equipped with a stirrer bar was charged with the appropriate substrate 1 (0.5 mmol, 1.0 equiv), [Ir(dF(CF3)ppy)2(dtbpy)]PF6 (16.9 mg, 3 mol%), CuO (7.9 mg, 20 mol%), bathophenanthroline (41 mg, 25mol%), and Cs2CO3(243 mg, 1.5 equiv). DCM (10 mL) was added, then the flask was quickly degassed three times and flushed with O2 from a balloon. The mixture was heated to 40 °C and irradiated with six 100 W blue LEDs (5 cm away) for 40 h. When the reaction was complete, the solvent was removed under a vacuum and the mixture was purified by flash chromatography (silica gel, PE–EtOAc). Benzyl 4-Oxopiperidine-1-carboxylate (2a) Prepared by the general procedure as a yellow liquid; yield: 99 mg (85%). IR (KBr): 2359, 1699, 1630, 1429, 1353 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.28 (m, 5 H), 5.15 (s, 2 H), 3.76 (t, J = 6.3 Hz, 4 H), 2.42 (t, J = 5.9 Hz, 4 H). 13C NMR (101 MHz, CDCl3): δ = 207.09, 155.05, 136.32, 128.54, 128.20, 127.99, 67.55, 43.07, 40.99. HRMS (ESI): m/z [M + Na]+ calcd for C13H15NNaO3: 256.0944; found: 256.0910. The spectra matched those reported in Ref. 10. 4-Fluorobenzaldehyde (2b) Prepared by the general procedure as a yellow liquid; yield: 45.5 mg (73%). IR (KBr): 1652, 1632, 1585, 1373, 1350 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.96 (s, 1 H), 7.96–7.85 (m, 2 H), 7.21 (t, J = 8.5 Hz, 2 H). MS (ESI): m/z = 147.1 [M + Na]+. The spectra matched those reported in Ref. 11.