Synlett 2024; 35(03): 268-278
DOI: 10.1055/a-2131-4126
account
Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations

Recent Uses of Photogenerated Oxygen-Centered Radicals in Intermolecular C–O Bond Formation

Camille Banoun
,
Emmanuel Magnier
,
This work was supported by a grant from the Agence Nationale de la Recherche with JCJC funding (ANR-20-CE07-0008-01).


Abstract

We report herein recent advances made by our group and others in the field of oxygen-centered radicals generated under photocatalysis. Thanks to the design of new O-radical precursors, these radicals can now be efficiently trapped by unsaturated systems in an intermolecular manner, via the formation of a new C–O bond.

1 Introduction

2 Reactions Involving Carbonyloxy Radicals

3 Reactions Involving Fluoroalkoxy Radicals

4 Reactions Involving Alkoxy Radicals

5 Conclusion



Publication History

Received: 19 June 2023

Accepted after revision: 17 July 2023

Accepted Manuscript online:
18 July 2023

Article published online:
14 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected reviews:
    • 1a Hartung J. Eur. J. Org. Chem. 2001; 619
    • 1b Hartung J, Gottwald T, Špehar K. Synthesis 2002; 1469
    • 1c Salamone M, Bietti M. Synlett 2014; 1803

      Selected examples:
    • 2a Walling C, Thaler W. J. Am. Chem. Soc. 1961; 83: 3877
    • 2b Inoue T, Koyama K, Matsuoka T, Tsutsumi S. Bull. Chem. Soc. Jpn. 1967; 40: 162
    • 2c Elson IH, Mao SW, Kochi JK. J. Am. Chem. Soc. 1975; 97: 335
    • 2d Wong PC, Griller D, Scaiano JC. J. Am. Chem. Soc. 1982; 104: 5106
    • 2e Jones MJ, Moad G, Rizzardo E, Solomon DH. J. Org. Chem. 1989; 54: 1607

      Selected reviews on photoredox generation of oxygen-centered radicals:
    • 3a Jia K, Chen YY. Chem. Commun. 2018; 54: 6105
    • 3b Guo J.-J, Hu A, Zuo Z. Tetrahedron Lett. 2018; 59: 2103
    • 3c Capaldo L, Ravelli D. Chem. Commun. 2019; 55: 3029
    • 3d Lee JW, Lee KN, Ngai M.-Y. Angew. Chem. Int. Ed. 2019; 58: 11171
    • 3e Tsui E, Wang H, Knowles RR. Chem. Sci. 2020; 11: 11124
    • 3f Chang L, An Q, Duan L, Feng K, Zuo Z. Chem. Rev. 2022; 122: 2429
    • 3g Lee DS, Soni VK, Cho EJ. Acc. Chem. Res. 2022; 55: 2526
    • 3h Budnikov AS, Krylov IB, Lastovko AV, Yu B, Terent’ev AO. Asian J. Org. Chem. 2022; 11: e202200262
  • 4 Rao H, Wang P, Li CL. Eur. J. Org. Chem. 2012; 6503
  • 5 Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Adv. Synth. Catal. 2021; 363: 369
  • 6 Hilborn JW, Pincock JA. J. Am. Chem. Soc. 1991; 113: 2683
  • 7 Chateanneuf J, Lusztyk J, Ingold KU. J. Am. Chem. Soc. 1988; 110: 2886
  • 8 Miyazawa K, Ochi R, Koike T, Akita M. Org. Chem. Front. 2018; 5: 1406
  • 9 Li J, Yuan Y, Bao X, Sang T, Yang J, Huo C. Org. Lett. 2021; 23: 3712
  • 10 Soni VK, Lee S, Kang J, Moon YK, Hwang HS, You Y, Cho EJ. ACS Catal. 2019; 9: 10454
  • 11 Patra T, Bellotti P, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2020; 59: 3172
  • 12 Patra T, Das M, Daniliuc CG, Glorius F. Nat. Catal. 2021; 4: 54
  • 13 McBurney RT, Harper AD, Slawin AM. Z, Walton JC. Chem. Sci. 2012; 3: 3436
  • 14 Tan G, Paulus F, Rentería-Gómez Á, Lalisse RF, Daniliuc CG, Gutierrez O, Glorius F. J. Am. Chem. Soc. 2022; 144: 21664
  • 15 Quach L, Dutta S, Pflüger PM, Sandfort F, Bellotti P, Glorius F. ACS Catal. 2022; 12: 2499

    • Recent reviews:
    • 16a Tlili A, Toulgoat F, Billard T. Angew. Chem. Int. Ed. 2016; 55: 11726
    • 16b Ghiazza C, Billard T, Tlili A. Chem. Eur. J. 2019; 25: 6482
    • 16c Zhang X, Tang P. Sci. China Chem. 2019; 62: 525
    • 16d Sahoo B, Hopkinson MN. Angew. Chem. Int. Ed. 2018; 57: 7942
    • 16e Barata-Vallejo S, Bonesi SM, Postigo A. Chem. Eur. J. 2022; 28: e202201776
  • 17 Zheng W, Morales-Rivera CA, Lee JW, Liu P, Ngai M.-Y. Angew. Chem. Int. Ed. 2018; 57: 9645
  • 18 Zheng W, Lee JW, Morales-Rivera CA, Liu P, Ngai M.-Y. Angew. Chem. Int. Ed. 2018; 57: 13795
  • 19 Jelier BJ, Tripet PF, Pietrasiak E, Franzoni I, Jeschke G, Togni A. Angew. Chem. Int. Ed. 2018; 57: 13784
  • 20 Duhail T, Bortolato T, Mateos J, Anselmi E, Jelier B, Togni A, Magnier E, Dagousset G, Dell’Amico L. Org. Lett. 2021; 23: 7088
  • 21 Petzold D, Nitschke P, Brandl F, Scheidler V, Dick B, Gschwind RM, König B. Chem. Eur. J. 2019; 25: 361
  • 22 Lee JW, Zheng W, Morales-Rivera CA, Liu P, Ngai M.-Y. Chem. Sci. 2019; 10: 3217
  • 23 Lin D, Prakash SG. H. Org. Lett. 2022; 24: 7707
  • 24 Tong C.-L, Xu X.-H, Qing F.-L. Angew. Chem. Int. Ed. 2021; 60: 22915
  • 25 Zellner R, Bednarek G, Hoffmann A, Kohlmann JP, Mörs V, Saathoff H. Ber. Bunsenges. Phys. Chem. 1994; 98: 141
  • 26 Bertoli G, Nartinez AM, Goebel JF, Belmonte D, Sivendran N, Gooßen LJ. Angew. Chem. Int. Ed. 2023; 62: e202215920
  • 27 Ramkumar N, Sperga A, Belyakov S, Mishnev A, Zacs D, Veliks J. Adv. Synth. Catal. 2023; 365: 1405

    • Selected examples under photoredox catalysis:
    • 28a Quint V, Morlet-Savary F, Lohier J.-F, Lalevée J, Gaumont A.-C, Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
    • 28b Zhang J, Li Y, Zhang FY, Hu CC, Chen YY. Angew. Chem. Int. Ed. 2016; 55: 1872
    • 28c Jia KF, Zhang FY, Huang HC, Chen YY. J. Am. Chem. Soc. 2016; 138: 1514
    • 28d Wang C, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 13495
    • 28e Hu A, Guo J.-J, Pan H, Tang H, Gao Z, Zuo Z. J. Am. Chem. Soc. 2018; 140: 1612
    • 28f Kim Y, Lee K, Mathi GR, Kim I, Hong S. Green Chem. 2019; 21: 2082
    • 28g Mathi GR, Jeong Y, Moon Y, Hong S. Angew. Chem. Int. Ed. 2020; 59: 2049
    • 29a Barthelemy A.-L, Tuccio B, Magnier E, Dagousset G. Angew. Chem. Int. Ed. 2018; 57: 13790
    • 29b Barthelemy A.-L, Tuccio B, Magnier E, Dagousset G. Synlett 2019; 1489
    • 30a Lee KY, Kochi JK. J. Chem. Soc., Perkin Trans. 2 1992; 1011
    • 30b Gould IR, Shukla D, Giesen D, Farid S. Helv. Chim. Acta 2001; 84: 2796
  • 31 Yuan F, Yan D.-M, Gao P.-P, Shi D.-Q, Xiao W.-J, Chen J.-R. ChemCatChem 2021; 13: 543

    • Selected examples:
    • 32a Moriarty RM, Prakash O, Duncan MP, Vaid RK, Musallam H. J. Org. Chem. 1987; 52: 150
    • 32b Singh VS, Singh C, Dikshit DK. Synth. Commun. 1998; 28: 45
    • 32c Yu J, Tian J, Zhang C. Adv. Synth. Catal. 2010; 352: 531
    • 32d Yu H, Xu Y, Fang Y, Dong R. Eur. J. Org. Chem. 2016; 5257
  • 33 Banoun C, Bourdreux F, Magnier E, Dagousset G. Org. Lett. 2021; 23: 8926
  • 34 Kim I, Park B, Kang G, Kim J, Jung H, Lee H, Baik M.-H, Hong S. Angew. Chem. Int. Ed. 2018; 57: 15517
  • 35 Mukaiyama T, Ishida A. Chem. Lett. 1975; 319

    • Recent examples:
    • 36a Szabó KF, Goliszewska K, Szurmak J, Rybicka-Jasińska K, Gryko D. Org. Lett. 2022; 24: 8120
    • 36b Briand M, Thai LD, Bourdreux F, Vanthuyne N, Moreau X, Magnier E, Anselmi E, Dagousset G. Org. Lett. 2022; 24: 9375

      For non-selective α/γ benzoyloxylation of enals, see:
    • 37a Demoulin N, Lifchits O, List B. Tetrahedron 2012; 68: 7568
    • 37b Chromiński M, Giedyk M, Gryko D. ARKIVOC 2014; (iv): 135
  • 38 Banoun C, Bourdreux F, Dagousset G. Chem. Commun. 2023; 59: 760