RSS-Feed abonnieren
DOI: 10.1055/a-2724-5763
Interfacial Organic Electrosynthesis with Chemically Modified Electrodes
Autoren
We are grateful for financial support from National Natural Science Foundation of China (22201124, 22471115), National Key R&D Program of China (2022YFA1505100), Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), the Natural Science Foundation of Guangdong Province (2024A1515011290), and the Science and Technology Innovation Commission of Shenzhen Municipality (JCYJ20240813094216021, 20231120100305001, JCYJ20220530114611025, and 20231120095020002).
Gefördert durch: Guangdong Provincial Key Laboratory Of Catalysis 2020B121201002
Gefördert durch: National Key R&D Program of China 2022YFA1505100
Gefördert durch: Science and Technology Innovation Commission of Shenzhen Municipality 20231120095020002,20231120100305001,JCYJ20220530114611025,JCYJ20240813094216021
Gefördert durch: Natural Science Foundation of Guangdong Province 2024A1515011290

Dedication
Dedicated to Prof. Robert H. Grubbs.
Abstract
Synthetic electrochemistry is a sustainable alternative to traditional redox chemistry, using electricity from renewable sources in place of stoichiometric reagents. However, electrochemical reactions occur at electrode interfaces where the local environment and surface properties critically influence reaction outcomes. This review highlights recent advances in harnessing interfacial effects through chemically modified electrodes for organic electrosynthesis. Two complementary strategies are examined: (1) nanoparticle-modified electrodes that modulate electron transfer and can participate directly in bond-forming events, and (2) electrodes bearing immobilized molecular catalysts that provide well-defined active sites. Representative case studies illustrate how these approaches enable oxidations, reductions, and redox-neutral reactions with tunable selectivity and new reactivity. Mechanistic insights from surface characterization, electroanalytical techniques, and operando spectroscopy are used to establish relationships between structure and reactivity at the electrified interface. This review surveys representative studies from 2015 to 2025 and primarily includes examples that compare chemically modified electrodes with their unmodified counterparts.
Publikationsverlauf
Eingereicht: 30. August 2025
Angenommen nach Revision: 07. Oktober 2025
Artikel online veröffentlicht:
14. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Moeller KD. Tetrahedron 2000; 56: 9527-9554
- 1b Yan M, Kawamata Y, Baran PS. Chem Rev 2017; 117: 13230-13319
- 1c Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew Chem Int Ed 2018; 57: 6018-6041
- 1d Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew Chem Int Ed 2018; 57: 5594-5619
- 1e Xiong P, Xu HC. Acc Chem Res 2019; 52: 3339-3350
- 1f Yuan Y, Lei A. Acc Chem Res 2019; 52: 3309-3324
- 1g Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Acc Chem Res 2020; 53: 300-310
- 1h Kingston C, Palkowitz MD, Takahira Y. et al. Acc Chem Res 2020; 53: 72-83
- 1i Liu J, Lu L, Wood D, Lin S. ACS Cent Sci 2020; 6: 1317-1340
- 1j Siu JC, Fu N, Lin S. Acc Chem Res 2020; 53: 547-560
- 1k Wang F, Stahl SS. Acc Chem Res 2020; 53: 561-574
- 1l Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem Soc Rev 2021; 50: 7941-8002
- 1m Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. ACS Cent Sci 2021; 7: 415-431
- 1n Cheng X, Lei A, Mei T-S, Xu H-C, Xu K, Zeng C. CCS Chem 2022; 4: 1120-1152
- 1o Malapit CA, Prater MB, Cabrera-Pardo JR. et al. Chem Rev 2022; 122: 3180-3218
- 1p Zeng L, Wang J, Wang D, Yi H, Lei A. Angew Chem Int Ed 2023; 62: e202309620
- 2a Heard DM, Lennox AJJ. Angew Chem Int Ed 2020; 59: 18866-18884
- 2b Reidell AC, Pazder KE, LeBarron CT, Stewart SA, Hosseini S. ACS Org Inorg Au 2024; 4: 579-603
- 2c Ma L, Gao X, Liu X. et al. Chin Chem Lett 2023; 34: 107735
- 3 Moses PR, Wier L, Murray RW. Anal Chem 1975; 47: 1882-1886
- 4a Lane RF, Hubbard AT. J Phys Chem 1973; 77: 1411-1421
- 4b Lane RF, Hubbard AT. J Phys Chem 1973; 77: 1401-1410
- 5 Watkins BF, Behling JR, Kariv E, Miller LL. J Am Chem Soc 1975; 97: 3549-3550
- 6 Horner L, Brich W. Justus Liebigs Ann Chem 1977; 1977: 1354-1364
- 7 Deronzier A, Lìmosin D, Moutet J-C. Electrochim Acta 1987; 32: 1643-1647
- 8 Miller LL, Christensen L. J Org Chem 1978; 43: 2059-2061
- 9 Coche L, Moutet JC. J Am Chem Soc 1987; 109: 6887-6889
- 10a Ewing TE, Kurig N, Yamaki YR. et al. Angew Chem Int Ed 2025; 64: e202417122
- 10b Lips S, Waldvogel SR. ChemElectroChem 2019; 6: 1649-1660
- 10c Gütz C, Grimaudo V, Holtkamp M. et al. ChemElectroChem 2017; 5: 247-252
- 10d McCreery RL. Chem Rev 2008; 108: 2646-2687
- 11a Shi A, Xie P, Wang Y, Qiu Y. Nat Commun 2025; 16: 2322
- 11b Chen Y, He Y, Gao Y. et al. Science 2024; 384: 670-676
- 11c Wang J, Zuo L, Guo Z. et al. Angew Chem Int Ed 2023; 62: e202315478
- 11d Zhao Y, Deng C, Tang D. et al. Nat Catal 2021; 4: 684-691
- 11e Zhang L, Liardet L, Luo J, Ren D, Gratzel M, Hu X. Nat Catal 2019; 2: 266-373
- 12 Chan G, Corsi D, Savateev O, Giusto P, Barham JP. Angew Chem Int Ed 2025; e202424300
- 13 Harwood SJ, Palkowitz MD, Gannett CN. et al. Science 2022; 375: 745-752
- 14 Palkowitz MD, Laudadio G, Kolb S. et al. J Am Chem Soc 2022; 144: 17709-17720
- 15 Zhang B, He J, Gao Y. et al. Nature 2023; 623: 745-751
- 16 Gao Y, Yan M, Cheng C. et al. J Am Chem Soc 2024; 146: 714-722
- 17 Lan L, Gao Y, Liu C, Zhang B, Xu K, Zeng C. Angew Chem Int Ed 2025; e202511623
- 18 Huang Y, Chong X, Liu C, Liang Y, Zhang B. Angew Chem Int Ed 2018; 57: 13163-13166
- 19 Jin K, Maalouf JH, Lazouski N, Corbin N, Yang D, Manthiram K. J Am Chem Soc 2019; 141: 6413-6418
- 20 Chung M, Jin K, Zeng JS, Ton TN, Manthiram K. J Am Chem Soc 2022; 144: 17416-17422
- 21 Zeng JS, Cosner EL, Delgado-Kukuczka SP. et al. J Am Chem Soc 2024; 146: 16521-16530
- 22 Bu F, Deng Y, Xu J. et al. Nature 2024; 634: 592-599
- 23 Shida N, Shimizu Y, Yonezawa A. et al. J Am Chem Soc 2024; 146: 30212-30221
- 24 Bu F, Deng Y, Lu L. et al. J Am Chem Soc 2025; 147: 5785-5795
- 25 Hu P, Xu W, Tian L. et al. Angew Chem Int Ed 2025; 64: e202501215
- 26 He X, Zhu X, Wang L, Li J, Yu C, Ye K-Y. Tetrahedron 2025; 176
- 27 Hickey DP, Milton RD, Chen D, Sigman MS, Minteer SD. ACS Catal 2015; 5: 5519-5524
- 28 Das A, Stahl SS. Angew Chem Int Ed 2017; 56: 8892-8897
- 29 Johnson BM, Francke R, Little RD, Berben LA. Chem Sci 2017; 8: 6493-6498
- 30 Zhu C-J, Yang X, Wang J. Nat Catal 2024; 7: 878-888
- 31 Yang L, Cao L, Huang R. et al. ACS Appl Mater Interfaces 2018; 10: 36290-36296
- 32 Ling J, Vonder Haar AL, Colley KZ, Kim J, Musser AJ, Milner PJ. Nat Chem. 2025
- 33a Lin Q, Li L, Luo S. Chem Eur J 2019; 25: 10033-10044
- 33b Rein J, Zacate SB, Mao K, Lin S. Chem Soc Rev 2023; 52: 8106-8125
- 34 Shen Y, Mu Y, Wang D, Liu C, Diaconescu PL. ACS Appl Mater Interfaces 2023; 15: 28851-28878
- 35 Zeng L, Jiao Y, Yan W. et al. Nat Synth 2023; 2: 172-181
- 36 Jiao K-J, Xing Y-K, Yang Q-L, Qiu H, Mei T-S. Acc Chem Res 2020; 53: 300-310
- 37 Schneeweiss MA, Kolb DM. Phys Status Solidi 1999; 173: 51-71