RSS-Feed abonnieren
DOI: 10.1055/a-2726-4179
Recent Advances in Cr-Catalyzed Asymmetric Nozaki–Hiyama–Kishi Reaction: From Alkyl Electrophiles to Alkyl Nucleophiles
Autoren
We are grateful for financial support from the Zhejiang Provincial Natural Science Foundation of China (XHD23B0101, LR25B020004), National Natural Science Foundation of China (22171231), and Zhejiang Provincial Key Laboratory Construction Project (2025ZY01063).
Gefördert durch: National Natural Science Foundation of China 22171231
Gefördert durch: Zhejiang Provincial Natural Science Foundation of China LR25B020004,XHD23B0101

Abstract
The Nozaki–Hiyama–Kishi (NHK) reaction is renowned for its excellent chemoselectivity and functional-group compatibility in carbonyl additions, and it has been widely applied in natural product synthesis. However, its development has remained relatively dormant for a long time, largely due to restricted diversity of radical precursors, the narrow structural diversity of products, and the need for stoichiometric metal reductants and dissociating reagents. Recently, the reaction has witnessed significant progress, driven by advances in asymmetric radical chemistry, as well as photochemistry and electrochemistry. In this review, we summarize key developments in chromium-catalyzed, asymmetric NHK reactions over the past decade, covering substrate scope, stereocontrol, and mechanistic insights, and discuss the opportunities and challenges that remain in this field.
Keywords
Cr-catalyzed - NHK reaction - Reductive coupling - Photoredox-neutral coupling - Alkyl electrophiles - Alkyl nucleophilesPublikationsverlauf
Eingereicht: 22. August 2025
Angenommen nach Revision: 17. Oktober 2025
Accepted Manuscript online:
17. Oktober 2025
Artikel online veröffentlicht:
14. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Li J, Knochel P. Synthesis 2019; 51: 2100
- 3a Fürstner A. Chem Rev 1999; 99: 991
- 3b Shen H, Xia X, Shi Z, Wang Z. Acc Chem Res 2025; 58: 2652
- 3c Yan H, Smith GS, Chen FE. Green Synth Catal 2022; 3: 219
- 4 Barbier. C R Hebd Seances Acad Sci 1899; 128: 110
- 5a Yamamoto Y, Asao N. Chem Rev 1993; 93: 2207
- 5b Li CJ. Tetrahedron 1996; 52: 5643
- 5c Shen ZL, Wang SY, Chok YK, Xu YH, Loh TP. Chem Rev 2013; 113: 271
- 5d Mushtaq A, Zahoor AF, Ahmad MN. et al. RSC Adv 2024; 14: 33536
- 6a Johar PS, Araki S, Butsugan Y. J Chem Soc, Perkin Trans 1992; 1: 711
- 6b Loh TP, Zhou JR. Tetrahedron Lett 1999; 40: 9115
- 6c Loh TP, Zhou JR, Yin Z. Org Lett 1999; 1: 1855
- 6d Hirayama LC, Gamsey S, Knueppel D, Steiner D, DeLaTorre K, Singaram B. Tetrahedron Lett 2005; 46: 2315
- 6e Haddad TD, Hirayama LC, Singaram B. J Org Chem 2010; 75: 642
- 6f Appelt HR, Limberger JB, Weber M. et al. Tetrahedron Lett 2008; 49: 4956
- 7 Okude Y, Hirano S, Hiyama T, Nozaki H. J Am Chem Soc 1977; 99: 3179
- 8a Jin H, Uenishi JI, Christ WJ, Kishi Y. J Am Chem Soc 1986; 108: 5644
- 8b Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J Am Chem Soc 1986; 108: 6048
- 9a Harnying W, Kaiser A, Klein A, Berkessel A. Chem Eur J 2011; 17: 4765
- 9b Harnying W, Berkessel A. Chem Eur J 2015; 21: 6057
- 10 Fürstner A, Shi N. J Am Chem Soc 1996; 118: 2533
- 11 Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. Angew Chem Int Ed 1999; 38: 3357
- 12 Inoue M, Suzuki T, Nakada M. J Am Chem Soc 2003; 125: 1140
- 13 Guo H, Dong CG, Kim DS. et al J Am Chem Soc 2009; 131: 15387
- 14 Lee JY, Miller JJ, Hamilton SS, Sigman MS. Org Lett 2005; 7: 1837
- 15a Hargaden GC, Müller-Bunz H, Guiry PJ. Eur J Org Chem 2007; 2007: 4235
- 15b McManus HA, Cozzi PG, Guiry PJ. Adv Synth Catal 2006; 348: 551
- 16 Xia G, Yamamoto H. J Am Chem Soc 2006; 128: 2554
- 17 Deng QH, Wadepohl H, Gade LH. Chem Eur J 2011; 17: 14922
- 18 Huang XR, Chen C, Lee GH, Pengb SM. Adv Synth Catal 2009; 351: 3089
- 19 Gil A, Albericio F, Álvarez M. Chem Rev 2017; 117: 8420
- 20 Choi HW, Demeke D, Kang FA. et al. Pure Appl Chem 2003; 75: 1
- 21a Narayanam JMR, Stephenson CRJ. Chem Soc Rev 2011; 40: 102
- 21b Prier CK, Rankic DA, MacMillan DWC. Chem Rev 2013; 113: 5322
- 21c Cheung KPS, Sarkar S, Gevorgyan V. Chem Rev 2022; 122
- 21d Chan AY, Perry IB, Bissonnette NB. et al. Chem Rev 2022; 122: 1485
- 22a Yan M, Kawamata Y, Baran PS. Chem Rev 2017; 117: 13230
- 22b Yan M, Kawamata Y, Baran PS. Angew Chem Int Ed 2018; 57: 4149
- 22c Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem Soc Rev 2021; 50: 7941
- 23a Hargaden GC, Guiry PJ. Adv Synth Catal 2007; 349: 2407
- 23b Zhang G, Tian Q. Synthesis 2016; 48: 4038
- 24 Kanai M, Mitsunuma H, Katayama Y. Synthesis 2022; 54: 1684
- 25a Shen H, Zhang Z, Shi Z, Gao K, Wang Z. Chem 2024; 10: 998
- 25b Shen H, Yang L, Xu M. et al. Angew Chem Int Ed 2025; 64: e202413198
- 25c Yang JS, Wang XY, Li YY, Zhang FM, Zhang XM, Tu YQ. Angew Chem Int Ed 2025; 64: e202420563
- 25d Shen H, Zeng X, Wang Z. Eur J Org Chem 2025; 28: e202401103
- 25e Yan H, Shan JR, Shi L. ChemCatChem 2024; 16: e202301344
- 26 Chen W, Yang Q, Zhou T, Tian Q, Zhang G. Org Lett 2015; 17: 5236
- 27a Guo R, Yang Q, Tian Q, Zhang G. Sci Rep 2017; 7: 4873
- 27b Ji HT, Tian QS, Xiang JN, Zhang GZ. Chin Chem Lett 2017; 28: 1182
- 28 Xiong Y, Zhang G. Org Lett 2016; 18: 5094
- 29a Zhuo CX, Zhang W, You SL. Angew Chem Int Ed 2012; 51: 12662
- 29b Zheng C, You SL. ACS Cent Sci 2021; 7: 432
- 30a Chen W, Bai J, Zhang G. Adv Synth Catal 2017; 359: 1227
- 30b Tian Q, Bai J, Chen B, Zhang G. Org Lett 2016; 18: 1828
- 30c Zhang G, He WM, Wang Z, Ji H, Xiong Y. Synthesis 2018; 50: 4915
- 31 Zhang FH, Guo X, Zeng X, Wang Z. Angew Chem Int Ed 2022; 61: e202117114
- 32 Guo X, Shi Z, Zhang FH, Wang Z. ACS Catal 2023; 13: 3170
- 33a Cozzi PG, Mignogna A, Zoli L. Pure Appl Chem 2008; 80: 891
- 33b Fernández-Ibáñez MÁ, Maciá B, Alonso DA, Pastor IM. Eur J Org Chem 2013; 2013: 7028
- 34 Lv YF, Liu G, Shi Z, Wang Z. Angew Chem Int Ed 2024; 63: e202406109
- 35 Xia X, Yao T, Shi Z, Wang Z. Angew Chem Int Ed 2025; 64: e202507474
- 36 Gao Y, Jiang B, Friede NC. et al. J Am Chem Soc. 2024 146.
- 37 Gao Y, Hill DE, Hao W. et al. J Am Chem Soc 2021; 143: 9478
- 38 Xiong Y, Zhang G. J Am Chem Soc 2018; 140: 2735
- 39 Zhang H, Chen B, Zhang G. Org Lett 2020; 22: 656
- 40 Nakatsukasa S, Takai K, Utimoto K. J Org Chem 1986; 51: 5045
- 41 Xia X, Wang Z. ACS Catal 2022; 12: 11152
- 42 Xu M, Li YB, Wang H, Glorius F, Qi X. Angew Chem Int Ed 2025; 64: e202500522
- 43 Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J Am Chem Soc 2018; 140: 12705
- 44 Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem Sci 2019; 10: 3459
- 45 Tanabe S, Mitsunuma H, Kanai M. J Am Chem Soc 2020; 142: 12374
- 46 Schwarz JL, Huang HM, Paulisch TO, Glorius F. ACS Catal 2020; 10: 1621
- 47 Schäfers F, Dutta S, Kleinmans R, Mück-Lichtenfeld C, Glorius F. ACS Catal 2022; 12: 12281
- 48a Schäfers F, Quach L, Schwarz JL, Saladrigas M, Daniliuc CG, Glorius F. ACS Catal 2020; 10: 11841
- 48b Schwarz JL, Kleinmans R, Paulisch TO, Glorius F. J Am Chem Soc 2020; 142: 2168
- 48c Huang HM, Bellotti P, Daniliuc CG, Glorius F. Angew Chem Int Ed 2021; 60: 2464
- 48d Dutta S, Erchinger JE, Schäfers F, Das A, Daniliuc CG, Glorius F. Angew Chem Int Ed 2022; 61: e202212136
- 48e Li YB, Xu M, Kellermann LA. et al. J Am Chem Soc 2025; 147: 2642
- 49 Zhang FH, Guo X, Zeng X, Wang Z. Nat Commun 2022; 13: 5036
- 50 Hu H, Shi Z, Guo X, Zhang FH, Wang Z. J Am Chem Soc 2024; 146: 5316
- 51a Murakami M, Ishida N. Chem Lett 2017; 46: 1692
- 51b Chang L, An Q, Duan L, Feng K, Zuo Z. Chem Rev 2022; 122: 2429
- 51c An Q, Chang L, Pan H, Zuo Z. Acc Chem Res 2024; 57: 2915
- 52 Ao Y, Wang N, Tang SY, Wang ZJ, Zou LH, Huang HM. ACS Catal 2025; 15: 2212
- 53 Ao Y, Xu M, Zheng CP, Qi X, Huang HM. ACS Catal 2025; 14966
- 54 Tang SY, Wang ZJ, Ao Y, Wang N, Huang HM. Nat Commun 2025; 16: 1354