RSS-Feed abonnieren
DOI: 10.1055/a-2758-9304
Organocatalytic Michael Addition of β-Ketoesters and Ethenesulfonyl Fluoride: Access to Chiral δ-Sultones via SuFEx Chemistry
Autoren
Gefördert durch: National Research Foundation 137961, 145774, 120419

Abstract
Sultones have been gaining popularity within medicinal chemistry due to their vast biological activity; however, access to chiral δ-sultones remains limited. In this study, we have developed an organocatalyzed Michael addition reaction between β-ketoesters and ethenesulfonyl fluoride using a bifunctional thiourea catalyst. This methodology resulted in 11 Michael adducts in yields up to 99% and enantioselectivities up to 84%. Subsequent cyclization under sulfonyl fluoride exchange conditions afforded seven novel chiral δ-sultones in low to moderate yields, generally preserving the enantioselectivity. This work presents an innovative strategy for efficiently synthesizing chiral δ-sultones.
Publikationsverlauf
Eingereicht: 12. August 2025
Angenommen nach Revision: 28. November 2025
Artikel online veröffentlicht:
09. Dezember 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew Chem Int Ed 2014; 53: 9430
- 2 Meng YP, Wang S-M, Fang WY. et al. Synthesis 2019; 52: 673
- 3 Wang S, Zhou C, Han Y, Li M, Ke C, Huang S. Synthesis 2025; 57: 1817
- 4 Homer JA, Xu L, Kayambu N. et al. Nat Rev Methods Primers 2023; 3: 58
- 5 Lou TS, Willis MC. Nat Rev Chem 2022; 6: 146
- 6 Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. Chem Soc Rev 2019; 48: 4731
- 7 Lee C, Cook AJ, Elisabeth JE, Friede NC, Sammis GM, Ball ND. ACS Catal 2021; 11: 6578
- 8 Chen Q, Mayer P, Mayr H. Angew Chem Int Ed 2016; 55: 12664
- 9 Xu Y, Zhang Z, Shi J, Liu X, Tang W. Arab J Chem 2021; 14: 103037
- 10 Hori M. Google Patents. 1990
- 11 Li B, Yan W, Zhang C. et al. Molecules 2015; 20: 4307
- 12 Xu HW, Zhao LJ, Liu HF. et al. Bioorg Med Chem Lett 2014; 24: 2388
- 13 Zhang Z, Min J, Chen M. et al. Eur J Med Chem 2020; 201: 112273
- 14 Ungureanu A, Levens A, Candish L, Lupton DW. Angew Chem 2015; 127: 11946
- 15 Chen X, Zha G-F, Fang WY, Rakesh K, Qin HL. Chem Commun 2018; 54: 9011
- 16 Chen X, Zha GF, Bare GAL, Leng J, Wang SM, Qin HL. Adv Synth Catal 2017; 359: 3254
- 17 Zhang F, Zhang Q, Xie P, He L, Cai Z, Du G. Org Chem Front 2024; 11: 6177
- 18 Zhang Q, Zhang F, Wei Z. et al. Asian J Org Chem 2024; 14: e202400619
- 19 Furuya S, Kanemoto K, Fukuzawa S-I. J Org Chem 2020; 85: 8142
- 20 Kopyt M, Tryniszewski M, Barbasiewicz M, Kwiatkowski P. Org Lett 2023; 25: 6818
- 21 Bonne D, Coquerel Y, Constantieux T, Rodriguez J. Tetrahedron Asymmetry 2010; 21: 1085
- 22 Benetti S, Romagnoli R, De Risi C, Spalluto G, Zanirato V. Chem Rev 1995; 95: 1065
- 23 Govender T, Arvidsson PI, Maguire GEM, Kruger HG, Naicker T. Chem Rev 2016; 116: 9375
- 24 Govender KB, Samipillai M, Govender T, Kruger HG, Naicker T. Z Kristallogr – New Cryst Struct 2017; 232: 697
- 25 Cainelli G, Galletti P, Giacomini D, Orioli P. Angew Chem Int Ed 2000; 39: 523
- 26 McCann SF, Annis GD, Shapiro R. et al. Pest Manag Sci 2001; 57: 153
- 27 Sartori SK, Diaz MAN, Diaz-Muñoz G. Tetrahedron 2021; 84: 132001
- 28 Mazur M, Masłowiec D. Antibiotics 2022; 11: 1327
- 29 Gach K, Janecka A. Anticancer Agents Med Chem 2014; 14: 688
- 30 Sumino S, Matsumoto F, Iwai T, Ito T. J Org Chem 2021; 86: 8500
- 31 Coffey KE, Murphy GK. Synlett 2015; 26: 1003
- 32 Bathich Y, Syed Monudeen Khan SE, Hamzah AS. Synlett 2011; 2011: 1154
- 33 Wong J, Ke Z, Yeung Y-Y. Tetrahedron Lett 2020; 61: 151772
- 34 Huber DP, Stanek K, Togni A. Tetrahedron Asymmetry 2006; 17: 658
- 35 Hamza A, Schubert G, Soós T, Pápai I. J Am Chem Soc 2006; 128: 13151
- 36 Izzo JA, Myshchuk Y, Hirschi JS, Vetticatt MJ. Org Biomol Chem 2019; 17: 3934
- 37 Dündar E, Işık M, Yildirim E, Tanyeli C. ACS Omega 2025; 10: 1226
- 38 Wang X, Ren W. Green Synthesis and Catalysis. 2024
- 39 Janssen MACH, Rappard R, Dekker T. et al. Eur J Org Chem 2024; 27: e202400797