Synlett 2009(3): 482-486  
DOI: 10.1055/s-0028-1087528
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Regioselective Heck Coupling Reactions of Aryl Halides and Dihydropyran in the Presence of an NHC-Pyridine Ligand

Jamie Jarusiewicz, Kyung Soo Yoo, Kyung Woon Jung*
Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0166, USA
Fax: +1(213)8214096; e-Mail: kwjung@usc.edu;
Further Information

Publication History

Received 2 August 2008
Publication Date:
21 January 2009 (online)

Abstract

The Heck coupling reactions of aryl halides and 3,4-dihydro-2H-pyran facilitated the regioselective synthesis of arylated cyclic enol ethers. Good yields were obtained using 5 mol% of an NHC-ligand-Pd-catalyst complex in the presence of K2CO3 in DMF at 100 ˚C. The use of this catalytic system broadens the substrate scope and improves the selectivity for this cross-coupling process.

    References and Notes

  • 1a Bourissou D. Guerret O. Gabbai F. Bertrand G. Chem. Rev.  2000,  100:  39 
  • 1b Herrmann WA. Angew. Chem. Int. Ed.  2002,  41:  1290 
  • 1c Perry MC. Burgess K. Tetrahedron: Asymmetry  2003,  14:  951 
  • 1d Cesar V. Bellemin-Laponnaz S. Gade LH. Chem. Soc. Rev.  2004,  33:  619 
  • 1e Sigman MS. Jensen AD. Acc. Chem. Res.  2006,  39:  221 
  • 1f Douthwaite RE. Coord. Chem. Rev.  2007,  251:  702 
  • 1g Kantchev EAB. O’Brien CJ. Organ MG. Angew. Chem. Int. Ed.  2007,  46:  2768 
  • 1h Gade LH. Bellemin-Laponnaz S. In Top. Organomet. Chem.   Vol. 21:  Glorius F. Springer; Berlin: 2007.  p.117-157  
  • 1i Arduengo AJ. Harlow RL. Kline M. J. Am. Chem. Soc.  1991,  113:  361 
  • 1j Enders D. Breuer K. Raabe G. Runsink J. Teles JH. Melder JP. Ebel K. Brode S. Angew. Chem., Int. Ed. Engl.  1995,  34:  1021 
  • 1k Herrmann WA. Elison M. Fischer J. Kocher C. Artus GRJ. Chem. Eur. J.  1996,  2:  772 
  • 2a Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 2b Peris E. Crabtree RH. Coord. Chem. Rev.  2004,  248:  2239 
  • 2c Grasa GA. Singh R. Stevens ED. Nolan SP. J. Organomet. Chem.  2003,  687:  269 
  • 2d Najera C. Gil-Molto J. Karlstrom S. Falvell LR. Org. Lett.  2003,  5:  1451 
  • 2e Chen W. Xi C. Wu Y.
    J. Organomet. Chem.  2007,  692:  4381 
  • 2f Khramov DM. Rosen EL. Joyce AV. Vu PD. Lynch VM. Bielawski CW. Tetrahedron  2008,  64:  6853 
  • 2g Taige MA. Zeller A. Ahrens S. Goutal S. Herdtweck E. Strassner T. J. Organomet. Chem.  2007,  692:  1519 
  • 2h Chen T. Gao J. Shi M. Tetrahedron  2006,  62:  6289 
  • 2i Xu Q. Duan W. Lei Z. Zhu Z. Shi M. Tetrahedron  2005,  61:  11225 
  • 3 Crabtree RH. J. Organomet. Chem.  2006,  691:  3146 
  • 4a Mizoroki T. Mori K. Ozaki A. Bull. Chem. Soc. Jpn.  1971,  44:  581 
  • 4b Heck RF. Nolley JP. J. Org. Chem.  1972,  37:  2320 
  • 4c de Meijere A. Meyer FE. Angew. Chem., Int. Ed. Engl.  1994,  33:  2379 
  • 4d Crisp GT. Chem. Soc. Rev.  1998,  27:  427 
  • 4e Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 4f Jeffery T. In Advances in Metal-Organic Chemistry   Vol. 5:  Liebeskind LS. JAI; London: 1996.  p.153-260  
  • 4g Nicolaou KC. Sorensen EJ. Classics in Total Synthesis   VCH; New York: 1996.  p.Chap. 31 
  • 4h Link JT. Overman LE. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; New York: 1998.  Chap. 6.
  • 5a Shimizu Y. Chem. Rev.  1993,  93:  1685 
  • 5b Yasumoto T. Chem. Rec.  2001,  1:  228 
  • 5c Conway JC. Urch CJ. Quayle P. Xu J. Synlett  2006,  776 
  • 6a Arai I. Doyle Daves G. J. Org. Chem.  1978,  44:  21 
  • 6b Andersson C. Hallberg A. Doyle Daves G. J. Org. Chem.  1987,  52:  3529 
  • 6c Larock RC. Gong WH. Baker BE. Tetrahedron Lett.  1989,  30:  2603 
  • 6d Loiseleur O. Hayashi M. Schmees N. Pfaltz A. Synthesis  1997,  1338 
  • 6e Jeffery T. David M. Tetrahedron Lett.  1998,  39:  5751 
  • 6f Dupont J. Gruber AS. Fonseca GS. Monteiro AL. Ebeling G. Organometallics  2001,  20:  171 
  • 7 Barczak NT. Grote RE. Jarvo ER. Organometallics  2007,  26:  4863 
  • 9 Littke AF. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  4176 
8

When using a combination of Pd(OAc)2 and 1,10-phenan-throline or 2,9-dimethylphenanthroline, the catalyst and ligand were premixed in DMF at r.t. for 30 min before the addition of substrates.

10

General Procedure for the Synthesis of Palladium(II) Complex 5
To a solution of 4 (0.6 mmol) in anhyd CH2Cl2 (20 mL) was added Ag2O (0.3 mmol), and the reaction mixture was stirred at r.t. for 4 h. The reaction mixture was then gravity filtered and dried under nitrogen to obtain a silver complex as a white solid. The silver complex (0.4 mmol) was then suspended in a solution of MeCN (20 mL) in a foil-covered round-bottom flask. To the reaction mixture was then added Pd(OAc)2 (0.4 mmol), and the reaction mixture was stirred at r.t. for 24 h. The reaction mixture was then gravity filtered, and the filtrate was concentrated in vacuo to obtain 5 (100 mg, 38% over two steps) as an orange solid. ¹H NMR (250 MHz, CDCl3): δ = 8.98-9.02 (m, 1 H), 7.82-7.90 (m, 1 H), 7.59 (d, J = 10.0 Hz, 1 H), 7.49-7.55 (m, 1 H), 7.32-7.45 (m, 4 H), 5.96 (br s, 2 H), 4.06 (s, 3 H), 2.02 (s, 6 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 178.1, 153.5, 153.4, 139.8, 134.5, 132.7, 125.0, 124.9, 124.4, 124.1, 110.9, 110.4, 51.40, 33.40, 22.60.

11

General Procedure for the Preparation of Substituted Dihydropyrans
An oven-dried resealable Schlenk flask was evacuated and filled with argon, then were added 4-iodoanisole (117 mg, 0.5 mmol), 3,4-dihydro-2H-pyran (0.55 mL, 6 mmol), K2CO3 (104 mg, 0.75 mmol), DMF (1 mL), palladium complex 5 (22 mg, 0.05 mmol). The reaction mixture was stirred at 100 ˚C. After 48 h the solution was then allowed to cool to r.t. EtOAc (20 mL) was added to the reaction mixture, and then the reaction mixture was washed with H2O (3 × 10 mL). The organic layer was dried over Na2SO4. After filtration, solvent was evaporated and purified by column chromatography (hexanes-EtOAc, 19:1), to afford 2-(4-methoxy-phenyl)-3,4-dihydro-2H-pyran (76 mg, 80%) as a light orange oil.
Compound 11a: yellow oil (62 mg, 71%). ¹H NMR (250 MHz, CDCl3): δ = 7.43 (m, 1 H), 7.17-7.26 (m, 3 H), 6.56 (d, J = 7.5 Hz, 1 H), 5.00 (dd, J = 10.0 Hz, 1 H), 4.80 (m,
1 H), 2.35 (s, 3 H), 2.20-2.32 (m, 2 H), 1.84-2.12 (m, 2 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 144.7, 140.0, 134.6, 130.4, 127.5, 126.3, 125.6, 100.6, 74.37, 29.29, 20.93, 18.95. GC-MS: m/z calcd for C12H14O: 174.1; found: 173.9. Anal. Calcd for C12H14O: C, 82.72; H, 8.10. Found: C, 82.56; H, 8.12.
Compound 11b: yellow oil (65 mg, 75%). ¹H NMR (250 MHz, CDCl3): δ: = 7.45-7.48 (m, 1 H), 7.38-7.42 (m, 1 H), 7.31-7.35 (m, 1 H), 7.17-7.27 (m, 1 H), 6.61 (d, J = 7.5 Hz, 1 H), 4.87-4.89 (m, 1 H), 4.83-4.87 (m, 1 H), 2.44 (s, 3 H), 2.26-2.36 (m, 2 H), 1.96-2.16 (m, 2 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 144.1, 137.9, 128.5, 127.9, 126.5, 124.2, 122.9, 100.5, 77.06, 30.22, 21.35, 20.29. GC-MS m/z calcd for C12H14O: 174.1; found: 174.0. Anal. Calcd for C12H14O: C, 82.72; H, 8.10. Found: C, 82.69; H, 8.11
Compound 11c: yellow oil (54 mg, 62%). ¹H NMR (250 MHz, CDCl3): δ = 7.48 (d, J = 10.0 Hz, 2 H), 7.22 (d, J = 10.0 Hz, 2 H), 6.53 (d, J = 7.5 Hz, 1 H), 4.82 (m, 1 H), 4.77 (m, 1 H), 2.35 (s, 3 H), 2.13-2.25 (m, 2 H), 1.90-2.08 (m, 2 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 140.1, 137.0, 129.0, 128.9, 126.8, 125.9, 92.47, 77.50, 32.67, 22.49, 21.10. GC-MS: m/z calcd: 174.1; found: 174.0.
Compound 12a: yellow oil (59 mg, 62%). ¹H NMR (250 MHz, CDCl3): δ = 7.43 (d, J = 10.0 Hz, 1 H), 7.22-7.35 (m, 1 H), 6.98 (t, J = 7.5 Hz, 1 H), 6.88 (d, J = 7.5 Hz, 1 H), 6.66 (d, J = 7.5 Hz, 1 H), 5.21 (d, J = 7.5 Hz, 1 H), 4.74-4.80 (m, 1 H), 3.84 (s, 3 H), 1.94-2.30 (m, 2 H), 1.72-1.88 (m, 2 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 158.1, 144.5, 128.1, 128.0, 126.4, 122.5, 111.0, 100.6, 72.47, 56.26, 29.58, 20.50. GC-MS: m/z calcd for C12H14O2: 190.1; found: 190.0. Anal. Calcd for C12H14O2: C, 75.76; H, 7.42. Found: C, 75.71; H, 7.48.
Compound 13: yellow oil (17 mg, 15%). ¹H NMR (250 MHz, CDCl3): δ = 7.62 (d, J = 10.0 Hz, 2 H), 7.47 (d, J = 10.0 Hz, 2 H), 6.54 (d, J = 7.5 Hz, 1 H), 4.90 (d, J = 7.5 Hz, 1 H), 4.75-4.84 (m, 1 H), 1.65-2.15 (m, 2 H), 1.55-1.64 (m, 2 H). GC-MS: m/z calcd: 230.1; found: 229.7.
Compound 16: orange oil (52 mg, 55%). ¹H NMR (250 MHz, CDCl3): δ = 6.98-7.11 (m, 3 H), 6.51 (d, J = 7.5 Hz, 1 H), 5.20 (d, J = 10.0 Hz, 1 H), 4.76-4.82 (m, 1 H), 2.39 (s, 6 H), 2.02-2.30 (m, 2 H), 1.80-1.94 (m, 2 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 143.9, 137.1, 136.0, 129.2, 127.2, 100.2, 75.11, 26.03, 20.80, 20.51. GC-MS: m/z calcd for C13H16O: 188.1; found: 188.0. Anal. Calcd for C13H16O: C, 82.94; H, 8.57. Found: C, 82.89; H, 8.59.
Compound 17: a yellow oil (49 mg, 61%). ¹H NMR (250 MHz, CDCl3): δ = 8.61 (s, 1 H), 8.53-8.57 (m, 1 H), 7.67-7.73 (m, 1 H), 7.27-7.33 (m, 1 H), 6.53 (d, J = 7.5 Hz, 1 H), 4.88 (d, J = 10.0 Hz, 1 H), 4.78-4.84 (m, 1 H), 2.18-2.30 (m, 2 H), 1.88-2.14 (m, 2 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 149.1, 147.8, 143.9, 133.6, 123.4, 101.0, 74.82, 30.14, 20.02. GC-MS: m/z calcd for C10H11NO: 161.1; found: 161.0. Anal. Calcd for C10H11NO: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.39; H, 6.91; N, 8.61.