Synlett 2010(15): 2340-2344  
DOI: 10.1055/s-0030-1258533
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Organocatalytic Enantioselective Michael Additions of Malonates to 2-Cyclopentenone

Nobuyuki Mase*, Maho Fukasawa, Norihiko Kitagawa, Fumiya Shibagaki, Naoyasu Noshiro, Kunihiko Takabe
Department of Molecular Science, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan
Fax: +81(53)4781196; e-Mail: tnmase@ipc.shizuoka.ac.jp;
Further Information

Publication History

Received 21 June 2010
Publication Date:
27 July 2010 (online)

Abstract

The Michael reaction of a dialkyl malonate with a cyclic enone using a chiral diamine-acid combination catalyst gave the desired Michael adduct in high yield with excellent enantiomeric excess in a protic solvent such as methanol and ethanol. The methanol molecule participates in a proton relay system in which the dialkyl malonate is activated through hydrogen bonding to afford the Michael adduct with excellent enantioselectivity.

    References and Notes

  • For recent reviews on organocatalytic Michael reactions, see:
  • 1a Enders D. Wang C. Liebich JX. Chem. Eur. J.  2009,  15:  11058 
  • 1b Bartoli G. Melchiorre P. Synlett  2008,  1759 
  • 1c Vicario JL. Badía D. Carrillo L. Synthesis  2007,  2065 
  • 1d Sulzer-Mossé S. Alexakis A. Chem. Commun.  2007,  3123 
  • 1e Almaºi D. Alonso DA. Nájera C. Tetrahedron: Asymmetry  2007,  18:  299 
  • 1f Tsogoeva SB. Eur. J. Org. Chem.  2007,  1701 
  • For iminium catalysis on cyclic enones, see:
  • 2a Hanessian S. Pham V. Org. Lett.  2000,  2:  2975 
  • 2b Benaglia M. Cinquini M. Cozzi F. Puglisi A. Celentano G. J. Mol. Catal. A: Chem.  2003,  204-205:  157 
  • 2c Tsogoeva SB. Jagtap SB. Ardemasova ZA. Kalikhevich VN. Eur. J. Org. Chem.  2004,  4014 
  • 2d Hanessian S. Govindan S. Warrier JS. Chirality  2005,  17:  540 
  • 2e Prieto A. Halland N. Jørgensen KA. Org. Lett.  2005,  7:  3897 
  • 2f Mitchell CET. Brenner SE. Ley SV. Chem. Commun.  2005,  5346 
  • 2g Mečiarová M. Toma Š. Kotrusz P. Org. Biomol. Chem.  2006,  4:  1420 
  • 2h Mitchell CET. Brenner SE. García-Fortanet J. Ley SV. Org. Biomol. Chem.  2006,  4:  2039 
  • 2i Tsogoeva SB. Jagtap SB. Ardemasova ZA. Tetrahedron: Asymmetry  2006,  17:  989 
  • 2j Hanessian S. Shao Z. Warrier JS. Org. Lett.  2006,  8:  4787 
  • 2k Xie J.-W. Yue L. Chen W. Du W. Zhu J. Deng J.-G. Chen Y.-C. Org. Lett.  2007,  9:  413 
  • 2l Li P. Wang Y. Liang X. Ye J. Chem. Commun.  2008,  3302 
  • 2m Malmgren M. Granander J. Amedjkouh M. Tetrahedron: Asymmetry  2008,  19:  1934 
  • 2n Moon HW. Cho MJ. Kim DY. Tetrahedron Lett.  2009,  50:  4896 
  • 2o Paixão MW. Holub N. Vila C. Nielsen M. Jørgensen KA. Angew. Chem. Int. Ed.  2009,  48:  7338 
  • For other organocatalytic Michael additions to cyclic enones, see:
  • 3a Tang H.-Y. Lu A.-D. Zhou Z.-H. Zhao G.-F. He L.-N. Tang C.-C. Eur. J. Org. Chem.  2008,  1406 
  • 3b Wu F. Li H. Hong R. Deng L. Angew. Chem. Int. Ed.  2006,  45:  947 
  • 3c Perdicchia D. Jørgensen KA. J. Org. Chem.  2007,  72:  3565 
  • 3d Cid MB. Lopez-Cantarero J. Duce S. Ruano JLG. J. Org. Chem.  2009,  74:  431 
  • 3e Shirakawa S. Kimura T. Murata S.-I. Shimizu S. J. Org. Chem.  2009,  74:  1288 
  • For iminium catalysis in Michael addition of malonate to cyclic enones, see:
  • 4a Yamaguchi M. Shiraishi T. Hirama M. Angew. Chem. Int. Ed.  1993,  32:  1176 
  • 4b Kawara A. Taguchi T. Tetrahedron Lett.  1994,  35:  8805 
  • 4c Yamaguchi M. Shiraishi T. Hirama M. J. Org. Chem.  1996,  61:  3520 
  • 4d Halland N. Aburel PS. Jørgensen KA. Angew. Chem. Int. Ed.  2003,  42:  661 
  • 4e Knudsen KR. Mitchell CET. Ley SV. Chem. Commun.  2006,  66 
  • 4f Prasetyanto EA. Lee S.-C. Jeong S.-M. Park S.-E. Chem. Commun.  2008,  1995 
  • 4g Wascholowski V. Knudsen KR. Mitchell CET. Ley SV. Chem. Eur. J.  2008,  14:  6155 
  • 4h Riguet E. Tetrahedron Lett.  2009,  50:  4283 
  • 4i Yoshida M. Narita M. Hirama K. Hara S. Tetrahedron Lett.  2009,  50:  7297 
  • For other organocatalytic Michael additions of nucleophiles to cyclic enones, see:
  • 5a Jiang Z. Ye W. Yang Y. Tan C.-H. Adv. Synth. Catal.  2008,  350:  2345 
  • 5b Li P. Wen S. Yu F. Liu Q. Li W. Wang Y. Liang X. Ye J. Org. Lett.  2009,  11:  753 
  • For pioneering studies on metal-complex catalysis in Michael addition of malonate to cyclic enones, see:
  • 6a Sasai H. Arai T. Shibasaki M. J. Am. Chem. Soc.  1994,  116:  1571 
  • 6b Sasai H. Arai T. Satow Y. Houk KN. Shibasaki M. J. Am. Chem. Soc.  1995,  117:  6194 
  • 7 Only one example of high enantioselectivity (>90% ee) in iminium catalysis using a primary-secondary diamine catalyst, reported by Zhao’s group, has been identified: Yang Y.-Q. Zhao G. Chem. Eur. J.  2008,  14:  10888 
  • 9a Dinér P. Nielsen M. Marigo M. Jørgensen KA. Angew. Chem. Int. Ed.  2007,  46:  1983 
  • 9b

    In case of phenyl substituent 1B is preferred (R¹ = t-Bu, R² = Ph, ΔE = 0.7 kcal/mol).

  • 10a Erkkilä A. Majander I. Pihko PM. Chem. Rev.  2007,  107:  5416 
  • 10b Mielgo A. Palomo C. Chem. Asian J.  2008,  3:  922 
  • 11 Reactions probably proceed through ammonium enolate mechanism using the catalyst not having acid moiety, such as 5, 10, and 11. See also: Wong CT. Tetrahedron  2009,  65:  7491 
  • An effective catalyst combination was identified using a fluorescence detection system for carbon-carbon bond formation, and then it was used for enantioselective aldol and Michael reactions:
  • 12a Mase N. Tanaka F. Barbas CF. Angew. Chem. Int. Ed.  2004,  43:  2420 
  • 12b Mase N. Thayumanavan R. Tanaka F. Barbas CF. Org. Lett.  2004,  6:  2527 
  • 12c Mase N. Nakai Y. Ohara N. Yoda H. Takabe K. Tanaka F. Barbas CF. J. Am. Chem. Soc.  2006,  128:  734 
  • 12d Mase N. Watanabe K. Yoda H. Takabe K. Tanaka F. Barbas CF. J. Am. Chem. Soc.  2006,  128:  4966 
  • 12e Mase N. Noshiro N. Mokuya A. Takabe K. Adv. Synth. Catal.  2009,  351:  2791 
  • 13a Sakthivel K. Notz W. Bui T. Barbas CF. J. Am. Chem. Soc.  2001,  123:  5260 
  • 13b Saito S. Nakadai M. Yamamoto H. Synlett  2001,  1245 
  • 13c Saito S. Yamamoto H. Acc. Chem. Res.  2004,  37:  570 
  • 13d Dambruoso P. Massi A. Dondoni A. Org. Lett.  2005,  7:  4657 
  • 13e Pansare SV. Pandya K. J. Am. Chem. Soc.  2006,  128:  9624 
  • 15a Toba S. Colombo G. Merz KM. J. Am. Chem. Soc.  1999,  121:  2290 
  • 15b Heine A. DeSantis G. Luz JG. Mitchell M. Wong C.-H. Wilson IA. Science  2001,  294:  369 
  • 16 Perrard T. Plaquevent J.-C. Desmurs J.-R. Hébrault D. Org. Lett.  2000,  2:  2959 
  • 17 Curran DP. Zhang Q. Adv. Synth. Catal.  2003,  345:  329 
  • 18 [α]D ²7 -117.8˚ (c = 1.0, CHCl3); Lit. [α]D ¹8 -119.4˚ (c = 0.89, CHCl3, >98% ee): Posner GH. Asirvatham E. J. Org. Chem.  1985,  50:  2589 
  • 19a Hill RK. Edwards AG. Tetrahedron  1965,  21:  1501 
  • 19b Demole E. Stoll M. Helv. Chim. Acta  1962,  45:  692 
8

http://www.msg.ameslab.gov/GAMESS/. See also Supporting Information.

14

Typical Procedure for the Direct Michael Reaction of the Malonate 15 with the Enone 14 Using Catalyst 12 (Table 3, entry 1): A catalyst stock solution (1.0 M in MeOH) was prepared as a mixture of (S)-(+)-1-(2-pyrrolidinyl-methyl)pyrrolidine (11, 0.5 mmol) and trifluoroacetic acid (0.5 mmol) in anhyd MeOH (0.5 mL) before use. 2-Cyclopentenone (14c, 0.5 mmol) was dissolved in MeOH (0.45 mL) and dibenzyl malonate (15a, 0.6 mmol) was added. To the mixture the catalyst stock solution (1.0 M in MeOH, 50 µL, 0.05 mmol) was added at 25 ˚C. After stirring for 48 h, the reaction mixture was directly purified by column chromatography (silica gel 5 g, hexanes-EtOAc, 90:10) to afford the Michael product 16a (98% yield, 94% ee). The enantiomeric excess (ee) of Michael products was determined by chiral-phase HPLC analysis and/or ¹³C NMR (see Supporting Information). The absolute configuration of Michael products was determined by comparison of the reported specific optical rotation and HPLC data.