Synlett 2011(2): 165-168  
DOI: 10.1055/s-0030-1259284
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran by Polymer-Supported IBX Amide

Hyo-Jin Yoona, Jung-Woo Choia, Hyung-Seok Janga, Jin Ku Chob, Jang-Woong Byunc, Woo-Jae Chunga, Sang-Myung Leea, Yoon-Sik Lee*a
a School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
Fax: +82(2)8769625; e-Mail: yslee@snu.ac.kr;
b Green Process R&D Department, Korea Institute of Industrial Technology, Cheonan, 331-825, Korea
c BeadTech Inc, Institute for Chemical Processes, Seoul National University, Seoul 151-744, Korea
Further Information

Publication History

Received 12 October 2010
Publication Date:
23 December 2010 (online)

Abstract

5-Hydroxymethyl-2-furfural (HMF) was selectively converted to 2,5-diformylfuran (DFF) under mild conditions by polymer-supported IBX amide reagent, thus providing a new platform for the production of highly valuable chemicals from biomass.

    References and Notes

  • 1a Bridgwater AV. Chem. Eng. J.  2003,  91:  87 
  • 1b Corma A. Iborra S. Velty A. Chem. Rev.  2007,  107:  2411 
  • 2a Werpy T. Petersen G. Aden A. Bozell J. Holladay J. White J. Manheim A. Elliot D. Lasure L. Jones S. Gerber M. Ibsen K. Lumberg L. Kelley S. Top Value Added Chemicals from Biomass, In Results of Screening for Potential Candidates from Sugars and Synthesis Gas   Vol. 1:  U.S. Department of Energy (DOE); Oak Ridge, TN: 2004. 
  • 2b Chheda JN. Huber GW. Dumesic JA. Angew. Chem. Int. Ed.  2007,  46:  7164 
  • 3 Kunkes EL. Simonetti DA. West RM. Serrano-Ruiz JC. Gärtner C. Dumesic JA. Science  2008,  322:  417 
  • 4a Lewkowski J. ARKIVOC  2001,  (i):  17 
  • 4b Lichtenthaler FW. Acc. Chem. Res.  2002,  35:  728 
  • 4c Ribeiro ML. Schuchardt U. Catal. Commun.  2003,  4:  83 
  • 5a Gandini A. Belgacem NM. Polym. Int.  1998,  47:  267 
  • 5b Gandini A. Belgacem NM. Prog. Polym. Sci.  1997,  22:  1203 
  • 6 Richter DT. Lash TD. Tetrahedron Lett.  1999,  40:  6735 
  • 7a Takimiya K. Otsubo T. Ogura F. Ashitaka H. Morita K. Suehiro T. Chem. Lett.  1994,  23:  255 
  • 7b Adams H. Bastida R. de Blas A. Carnota M. Fenton DE. Macías A. Rodriguez A. Rodriguez-Blas T. Polyhedron  1997,  16:  567 
  • 8a Del Poeta M. Schell WA. Dykstra CC. Jones S. Tidwell RR. Czarny A. Bajic M. Kumar A. Boykin D. Perfect JR. Antimicrob. Agents Chemother.  1998,  42:  2495 
  • 8b Hopkins KT. Wilson WD. Bendan BC. McCurdy DR. Hall JE. Tidwell RR. Kumar A. Bajic M. Boykin DW. J. Med. Chem.  1998,  41:  3872 
  • 9a Sheibley DW. Manzo MA. Gonzalez-Sanabria OD. J. Electrochem. Soc.  1983,  130:  255 
  • 9b Daub J. Salbeck J. Knöchel T. Fischer C. Kunkely H. Rapp KM. Angew. Chem., Int. Ed. Engl.  1989,  28:  1494 
  • 10a Cottier L. Descotes G. Lewkowski J. Synth. Commun.  1994,  24:  939 
  • 10b Partenheimer W. Grushin VV. Adv. Synth. Catal.  2001,  343:  102 
  • 10c Grushin V, Partenheimer W, and Manzer LE. inventors; US  2003/0055271. 
  • 10d Halliday GA. Young RJ. Grushin VV. Org. Lett.  2003,  5:  2003 
  • 10e Carlini C. Patrono P. Galletti AMR. Sbrana G. Zima V. Appl. Catal., A  2005,  289:  197 
  • 10f Amarasekara AS. Green D. McMillan E. Catal. Commun.  2008,  9:  286 
  • 10g Navarro OC. Canos AC. Chornet SI. Top. Catal.  2009,  52:  304 
  • 11a Wirth T. Angew. Chem. Int. Ed.  2005,  44:  3656 
  • 11b Ladziata U. Zhdankin VV. ARKIVOC  2006,  (ix):  26 
  • 11c Stang PJ. J. Org. Chem.  2003,  68:  2997 
  • 11d Zhdankin VV. Stang PJ. Chem. Rev.  2002,  102:  2523 
  • 11e Varvoglis A. Meth-Cohn O. Kirschning A. Rees C. Hypervalent Iodine in Organic Synthesis   Academic Press; London: 1996. 
  • 12a Chung W. Kim D. Lee Y. Tetrahedron Lett.  2003,  44:  9251 
  • 12b Kim D. Chung W. Lee Y. Synlett  2005,  279 
  • 12c Chung W. Kim D. Lee Y. Synlett  2005,  2175 
  • 12d Jang H. Chung W. Lee Y. Tetrahedron Lett.  2007,  48:  3731 
  • 12e Lei Z. Denecker C. Jegasothy S. Sherrington DC. Slater NKH. Sutherland AJ. Tetrahedron Lett.  2003,  44:  1635 
  • 12f Mülbaier M. Giannis A. Angew. Chem. Int. Ed.  2001,  40:  4393 
  • 12g Sorg G. Mengel A. Jung G. Rademann J. Angew. Chem. Int. Ed.  2001,  40:  4395 
  • 13 Trost BM. Braslau R. J. Org. Chem.  1988,  53:  532 
14

Synthesis of Polymer-Supported IBX Amide Reagent Polymer-supported IBX amide reagent was prepared from aminomethyl polystyrene resin (AM PS, 2.1 mmol of NH2/g, Beadtech Inc.). After AM PS resin was pre-swollen with DMF at r.t. for 1 h, 2-iodobenzoic acid was coupled to the resin using DIPCDI/HOBt (3 equiv, each) at r.t. for 4 h to produce 2-iodobenzamide resin (1, Scheme  [³] ). The resin was then oxidized by tetrabutylammonium oxone (5 equiv) with methylsulfonic acid in CH2Cl2 for 12 h.¹³ The loading level of polymer-supported oxidants was determined to be 1.02 mmol/g by methoxybenzyl alcohol oxidation method.¹²

15

Reusability Test of Polymer-Supported IBX Amide Reagent Upon completion of oxidation, DFF was extracted with CH2Cl2 and the remaining polymer-supported IBA (iodosobenzoic acid, reduced form of IBX) amide was separated by simple filtration. The filtered polymer-supported IBA was easily regenerated after treatment with tetrabutylammonium oxone (5 equiv) and methanesulfonic acid for 12 h as previously reported.¹²

16

Direct Production of DFF from Fructose
In the one-pot reaction, Amberlist 15® resin (100 mg, purchased from Aldrich) as a solid-acid catalyst along
with polymer-supported IBX amide reagent (100 mg) as an oxidant reagent were reacted together with fructose
(1 mmol) under DMSO at 100 ˚C.

17

Analysis of Products from Direct Conversion from Fructose
Direct conversion of fructose to DFF was analyzed using HPLC equipped with a refractive index detector. The column oven temperature was 30 ˚C, and mobile phase was a 25% MeCN aq solution applied at a flow rate of 1 mL/min. The amounts of HMF and DFF in the reaction mixture were also analyzed by HPLC with a UV detector, and the yields were calculated by GC-MS analysis. From this experiment, we identified two main byproducts as AMF (5-acetoxy-methyl-2-furaldehyde, MS: m/z = 168.15) and OBMF {5,5′-[oxybis(methylene)-bis-2-furaldehyde], MS: m/z = 234.05}.