Synlett 2011(4): 508-512  
DOI: 10.1055/s-0030-1259525
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Direct Aldol Reactions of Achiral Ketones with Racemic Enolizable α-Substituted Aldehydes: Scope and Limitations

Dale E. Ward*, Vishal Jheengut, Garrison E. Beye, H. Martin Gillis, Athanasios Karagiannis, Fabiola Becerril-Jimenez
Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
Fax: +1(306)9664730; e-Mail: dale.ward@usask.ca;
Weitere Informationen

Publikationsverlauf

Received 7 December 2010
Publikationsdatum:
02. Februar 2011 (online)

Abstract

Aldol reactions of racemic enolizable dioxolan-protected α-substituted-β-ketoaldehydes with representative achiral ketones catalyzed by proline or 5-(2-pyrrolidine-2-yl)-1H-tetrazole in wet DMSO proceed with dynamic kinetic resolution (or via DYKAT with an α-substituted-β-alkoxyaldehyde) to give adducts with high dr and ee.

    References

  • 1 List B. Lerner RA. Barbas CF. J. Am. Chem. Soc.  2000,  122:  2395 
  • Recent reviews:
  • 2a Zlotin SG. Kucherenko AS. Beletskaya IP. Russ. Chem. Rev.  2009,  78:  737 
  • 2b Kotsuki H. Ikishima H. Okuyama A. Heterocycles  2008,  75:  493 
  • 2c Melchiorre P. Marigo M. Carlone A. Bartoli G. Angew. Chem. Int. Ed.  2008,  47:  6138 
  • 2d Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev.  2007,  107:  5471 
  • 2e Pellissier H. Tetrahedron  2007,  63:  9267 
  • 2f Guillena G. Najera C. Ramon DJ. Tetrahedron: Asymmetry  2007,  18:  2249 
  • 3a Ward DE. Man CC. Guo C. Tetrahedron Lett.  1997,  38:  2201 
  • 3b Ward DE. Guo C. Sasmal PK. Man CC. Sales M. Org. Lett.  2000,  2:  1325 
  • 3c Ward DE. Becerril-Jimenez F. Zahedi MM. J. Org. Chem.  2009,  74:  4447 ; and references cited therein
  • 4a Ward DE. Jheengut V. Tetrahedron Lett.  2004,  45:  8347 
  • See also:
  • 4b Nyberg AI. Usano A. Pihko PM. Synlett  2004,  1891 
  • 4c Pihko PM. Laurikainen KM. Usano A. Nyberg AI. Kaavi JA. Tetrahedron  2006,  62:  317 
  • Recent examples with chiral aldehyde acceptors:
  • 5a Hanessian S. Mi X. Synlett  2010,  761 
  • 5b Suri JT. Ramachary DB. Barbas CF. Org. Lett.  2005,  7:  1383 
  • With evidence of double stereodifferentiation:
  • 5c Palyam N. Majewski M. J. Org. Chem.  2009,  74:  4390 
  • 5d Calderon F. Doyaguez EG. Cheong PH.-Y. Fernandez-Mayoralas A. Houk KN. J. Org. Chem.  2008,  73:  7916 
  • 5e Ibrahem I. Zou W. Xu Y. Cordova A. Adv. Synth. Catal.  2006,  348:  211 
  • 5f Grondal C. Enders D. Tetrahedron  2006,  62:  329 
  • 5g Alcaide B. Almendros P. Luna A. Torres MR. J. Org. Chem.  2006,  71:  4818 
  • 5h Cordova A. Ibrahem I. Casas J. Sunden H. Engqvist M. Reyes E. Chem. Eur. J.  2005,  11:  4772 
  • With (dynamic) kinetic resolution:
  • 5i Chercheja S. Nadakudity SK. Eilbracht P. Adv. Synth. Catal.  2010,  352:  637 
  • 5j Reyes E. Cordova A. Tetrahedron Lett.  2005,  46:  6605 
  • Dynamic kinetic resolution with chiral ketone acceptors:
  • 5k Wang Y. Zhang Y. Chin. J. Chem.  2010,  28:  1267 
  • 5l Yang J. Wang T. Ding Z. Shen Z. Zhang Y. Org. Biomol. Chem.  2009,  7:  2208 
  • 5m Wang Y. Shen Z. Li B. Zhang Y. Zhang Y. Chem. Commun.  2007,  1284 ; for citations to early examples, see ref. 8a
  • 6 Kinetic resolution of racemic substrates is equivalent to an enantiotopic-group-selective reaction, i.e., groups on enantiomeric substrates are enantiotopic by external comparison. See: Mislow K. Raban M. Top. Stereochem.  1967,  1:  1 
  • Reviews on double stereodifferentiation:
  • 7a Masamune S. Choy W. Petersen JS. Sita LR. Angew. Chem., Int. Ed. Engl.  1985,  24:  1 
  • 7b Kolodiazhnyi OI. Tetrahedron  2003,  59:  5953 
  • 8a Ward DE. Jheengut V. Akinnusi OT. Org. Lett.  2005,  7:  1181 
  • 8b Ward DE. Jheengut V. Beye GE.
    J. Org. Chem.  2006,  71:  8989 
  • 9 Pellissier H. Tetrahedron  2008,  64:  1563 
  • 10 Review: Longbottom DA. Franckevicius V. Kumarn S. Oelke AJ. Wascholowski V. Ley SV. Aldrichimica Acta  2008,  41:  3 
  • 17 Ward DE. Sales M. Man CC. Shen J. Sasmal PK. Guo C. J. Org. Chem.  2002,  67:  1618 
  • Review:
  • 18a Steinreiber J. Faber K. Griengl H. Chem. Eur. J.  2008,  14:  8060 
  • Accordingly, DYKAT involves the overall resolution of racemic (types I and II) or diastereomeric (types III and IV) mixtures involving interconverting diastereomeric intermediates (cf. DKR of enantiomeric intermediates). Type III involves interconversion of diastereomers by epimerization while in type IV diastereomers are interconverted via achiral intermediates. We are unaware of previous examples of type III DYKAT via an aldol reaction. For examples involving DYKAT via aldol-retroaldol mechanism (type IV), see ref. 5h, 5j, and:
  • 18b Yamaguchi A. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2009,  131:  10842 
  • 18c Steinreiber J. Schurmann M. Wolberg M. van Assema F. Reisinger C. Fesko K. Mink D. Griengl H. Angew. Chem. Int. Ed.  2007,  46:  1624 
  • 19a Evans DA. Dart MJ. Duffy JL. Rieger DL.
    J. Am. Chem. Soc.  1995,  117:  9073 
  • 19b Evans DA. Dart MJ. Duffy JL. Yang MG. J. Am. Chem. Soc.  1996,  118:  4322 
  • 21a Beye GE. Ward DE. J. Am. Chem. Soc.  2010,  132:  7210 
  • 21b Jheengut V. Ward DE. J. Org. Chem.  2007,  72:  7805 
  • 22 Compound (±)-5a is also a useful intermediate: Ward DE. Gillis HM. Akinnusi OT. Rasheed MA. Saravanan K. Sasmal PK. Org. Lett.  2006,  8:  2631 
  • 23a Izquierdo I. Plaza MT. Robles R. Mota AJ. Franco F. Tetrahedron: Asymmetry  2001,  12:  2749 
  • 23b Shigehisa H. Mizutani T. Tosaki S.-Y. Ohshima T. Shibasaki M. Tetrahedron  2005,  61:  5057 
  • 24 Rodriguez B. Bruckmann A. Bolm C. Chem. Eur. J.  2007,  13:  4710 
11

Little or no aldol adducts were observed in CHCl3, MeCN, or THF.

12

A solution of 5c (2 M in DMF), H2O (1 equiv), and 6 (0.2 equiv) at r.t. for 2 d gave a 1:1.1 mixture (by ¹H NMR) of 2c and 5c (46% isolated; dr = 20, ee >95%).

13

A DMSO solution of (-)-5a, H2O (8 equiv), and 6 (0.2 equiv) at r.t. for 4 d gave a 1:1.8 mixture (by ¹H NMR) of (±)-2a and (-)-5a (43% isolated; dr >20, ee >95%).

14

After 2 d, a solution of (±)-2b in DMSO containing D2O
(20 equiv) and either 4 or 6 (0.5 equiv) showed >90% deuteration of the α-CH confirming racemization under these conditions.

15

We were unable to determine the ee for 13a.

16

Subjecting 11a or 11b to the reaction conditions confirmed their susceptibility to elimination, particularly in the presence of 6.

20

We were unable to determine the ee for 17. ¹H NMR of the crude product suggested the possible presence of minor amounts of other adducts arising from 14 but these could not be quantified or isolated. The maximum yield of enantiopure 18 from this reaction is 50%.

25

The mixture is initially homogeneous but becomes solid as 5a precipitates. Diastereoselectivity was improved with small amounts of water (2 equiv, dr >20; 0 equiv, dr = 13) but the reaction was suppressed with larger amounts (ref. 4).

26

Presumably by increasing the solubility of 6 and increasing the rate of racemization of 2a.