Synthesis 2014; 46(09): 1236-1242
DOI: 10.1055/s-0033-1340733
paper
© Georg Thieme Verlag Stuttgart · New York

Amidation of Aryl Halides with Isocyanides Using a Polymer-Supported Palladium–N-Heterocyclic Carbene Complex as an Efficient, Phosphine-Free and Heterogeneous Recyclable Catalyst

Bhikan J. Khairnar
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400 019, India   Fax: +91(22)33611020   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
,
Bhalchandra M. Bhanage*
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400 019, India   Fax: +91(22)33611020   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 16 November 2013

Accepted after revision: 12 January 2014

Publication Date:
10 March 2014 (online)


Abstract

The amidation of aryl halides with alkyl/aryl isocyanides to give the corresponding amides using polymer-supported palladium–N-heterocyclic carbene complex (PS-Pd-NHC) as an efficient heterogeneous recyclable catalyst is described. The catalytic system was optimized with respect to various reaction parameters giving excellent yields of the desired products. The catalyst can be easily separated by a simple filtration process and recycled further for up to four consecutive recycle without any loss of activity and selectivity. The protocol is advantageous due to the ease in handling of the catalyst, simple workup procedure, phosphine-free, and effective catalyst recyclability.

Supporting Information

 
  • References

    • 1a Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 1b Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 1c Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 1d Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaksh A, Zhang TY. Green Chem. 2007; 9: 411
    • 1e Baum JC, Milne JE, Murry JA, Thiel OR. J. Org. Chem. 2009; 74: 2207
    • 2a Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 2b Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 2c Dunetz JR, Xiang Y, Baldwin A, Ringling J. Org. Lett. 2011; 13: 5048
    • 2d Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2012; 48: 666
    • 2e Li J, Subramaniam K, Smith D, Qiao JX, Li JJ, Qian-Cutrone J, Kadow JF, Vite GD, Chen B. Org. Lett. 2012; 14: 214
    • 3a Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 3b Lin Y, Alper H. Angew. Chem. Int. Ed. 2001; 40: 779
    • 3c Roberts B, Liptrot D, Alcaraz L, Luker T, Stocks MJ. Org. Lett. 2010; 12: 4280
    • 3d Wu XF, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 9750
    • 3e Ju J, Jeong M, Moon J, Jung HM, Lee S. Org. Lett. 2007; 9: 4615
    • 3f Sawant DN, Wagh YS, Bhatte KD, Bhanage BM. J. Org. Chem. 2011; 76: 5489
    • 3g Wu XF, Neumann H, Beller M. Chem. Asian J. 2010; 5: 2168
    • 4a Naota T, Murahashi S. Synlett 1991; 693
    • 4b Gunanathan C, Ben-David Y, Milstein D. Science (Washington, D.C.) 2007; 317: 790
    • 4c Fujita K, Takahashi Y, Owaki M, Yamamoto K, Yamaguchi R. Org. Lett. 2004; 6: 2785
    • 4d Nordstrøm LU, Vogt H, Madsen R. J. Am. Chem. Soc. 2008; 130: 17672
    • 4e Zweifel T, Naubron JV, Grutzmacher H. Angew. Chem. Int. Ed. 2009; 48: 559
    • 4f Watson AJ. A, Maxwell AC, Williams JM. J. Org. Lett. 2009; 11: 2667
    • 4g Soule JF, Miyaura H, Kobayashi S. J. Am. Chem. Soc. 2011; 133: 18550
    • 4h Shimizu K, Ohshima K, Satsuma A. Chem. Eur. J. 2009; 15: 9977
    • 4i Dam JH, Osztrovszky G, Nordstøm LU, Madsen R. Chem. Eur. J. 2010; 16: 6820
    • 4j Muthaiah S, Ghosh SC, Jee JE, Chen C, Zhang J, Hong SH. J. Org. Chem. 2010; 75: 3002
    • 4k Foot JS, Kanno H, Giblin GM. P, Taylor RJ. K. Synthesis 2003; 1055
    • 4l Yamaguchi K, Kobayashi H, Oishi T, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 544
  • 5 Jiang H, Liu B, Li Y, Wang A, Huang H. Org. Lett. 2011; 13: 1028
    • 6a Yanase T, Monguchi Y, Sajiki H. RSC Adv. 2012; 2: 590
    • 6b Alimardanov A, de Vondervoort LS, de Vries AH. M, de Vries JG. Adv. Synth. Catal. 2004; 346: 1812
    • 6c Deng CL, Guo SM, Xie YX, Li JH. Eur. J. Org. Chem. 2007; 1457
    • 6d Gauthier D, Beckendorf S, Gøgsig TM, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2009; 74: 3536
    • 6e Jiang Z, She J, Lin X. Adv. Synth. Catal. 2009; 351: 2558
    • 6f Gadge ST, Khedkar MV, Lanke SR, Bhanage BM. Adv. Synth. Catal. 2012; 354: 2049
    • 6g Gadge ST, Bhanage BM. J. Org. Chem. 2013; 78: 6793
    • 7a Herrmann W. Angew. Chem. Int. Ed. 2002; 41: 1290
    • 7b Sprengers JW, Wassenaar J, Clement ND, Cavell KJ, Elsevier CJ. Angew. Chem. Int. Ed. 2005; 44: 2026
    • 7c Hauwert P, Boerleider R, Warsink S, Weigand JJ, Elsevier CJ. J. Am. Chem. Soc. 2010; 132: 16900
    • 7d Kim HJ, Kim M, Chang S. Org. Lett. 2011; 13: 2368
    • 7e Patil NT. Angew. Chem. Int. Ed. 2011; 50: 1759
    • 7f Park JH, Bhilare SV, Youn SW. Org. Lett. 2011; 13: 2228
    • 7g Droge T, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 6940
    • 8a Bagal DB, Qureshi ZS, Dhake KP, Khan SR, Bhanage BM. Green Chem. 2011; 13: 1490
    • 8b Qureshi ZS, Revankar SA, Khedkar MV, Bhanage BM. Catal. Today 2012; 198: 148
    • 8c Qureshi ZS, Deshmukh KM, Tambade PJ, Bhanage BM. Synthesis 2011; 243
    • 8d Byun J, Lee Y. Tetrahedron Lett. 2004; 45: 1837
    • 8e Kim J, Jun B, Byun J, Lee Y. Tetrahedron Lett. 2004; 45: 5827
    • 8f Khedkar MV, Khan SR, Dhake KP, Bhanage BM. Synthesis 2012; 44: 2623

      Transition-metal-free catalyzed reactions of isocyanides, see:
    • 9a Sha F, Huang X. Angew. Chem. Int. Ed. 2009; 48: 3458
    • 9b Okandeji BO, Sello JK. J. Org. Chem. 2009; 74: 5067
    • 9c Fayol A, Zhu J. Org. Lett. 2004; 6: 115
    • 9d Kadzimirsz D, Hildebrandt D, Merz K, Dyker G. Chem. Commun. 2006; 661
    • 9e Li Y, Xu X, Tan J, Xia C, Zhang D, Liu Q. J. Am. Chem. Soc. 2011; 133: 1775
    • 9f Xia Z, Zhu Q. Org. Lett. 2013; 15: 4110

      Transition-metal-catalyzed reactions of isocyanides, see:
    • 10a Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 10b Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
    • 10c Chatani N, Oshita M, Tobisu M, Ishii Y, Murai S. J. Am. Chem. Soc. 2003; 125: 7812
    • 10d Fukumoto Y, Hagihara M, Kinashi F, Chatani N. J. Am. Chem. Soc. 2011; 133: 10014
    • 10e Majumder S, Gipson KR, Odom AL. Org. Lett. 2009; 11: 4720
    • 10f Barnea E, Majumder S, Staples RJ, Odom AL. Organometallics 2009; 28: 3876
  • 11 Compounds 3a, 3g and 3m are also reported, but the mp values reported are significantly different from what we, and others, observed; see: Shaabani E, Soleimani E, Rezayan AH. Tetrahedron Lett. 2007; 48: 6137
  • 12 Mokhtary M, Najafezadeh F. E-J. Chem. 2012; 9: 576
  • 13 Compounds 3f and 3t are also reported but data sets are incomplete, with only mp, IR and 1H NMR data given; see: Shi F, Li J, Li C, Jia X. Tetrahedron Lett. 2010; 51: 6049
  • 14 Compound 3g is also reported but the data set is incomplete, with only mp and 1H NMR data given; see: Pop IE, Deprez BP, Tartar AL. J. Org. Chem. 1997; 62: 2594
  • 15 Ueda T, Konishi H, Manabe K. Org. Lett. 2013; 15: 5370