Synlett 2018; 29(09): 1195-1198
DOI: 10.1055/s-0036-1591949
letter
© Georg Thieme Verlag Stuttgart · New York

l-Proline-Catalysed One-Pot aza-Diels–Alder Reaction in Water: Regioselective Synthesis of Spiro(isoxazolo[5,4-b]pyridine-5,5′-pyrimidine) Derivatives

Yuvaraj Dommaraju*
a   Applied Organic Chemistry Group, Chemical Science & Technology Division, CSIR-North-East Institute of Science and Technology, Jorhat 785006, Assam, India   Email: dr_yuvarajd@yahoo.com   Email: dr_dprajapati2003@yahoo.co.uk
b   Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, Maharashtra, India
,
Somadrita Borthakur
a   Applied Organic Chemistry Group, Chemical Science & Technology Division, CSIR-North-East Institute of Science and Technology, Jorhat 785006, Assam, India   Email: dr_yuvarajd@yahoo.com   Email: dr_dprajapati2003@yahoo.co.uk
,
Dipak Prajapati*
a   Applied Organic Chemistry Group, Chemical Science & Technology Division, CSIR-North-East Institute of Science and Technology, Jorhat 785006, Assam, India   Email: dr_yuvarajd@yahoo.com   Email: dr_dprajapati2003@yahoo.co.uk
› Author Affiliations
We thank CSIR, New Delhi for financial support to this work under network project. YD thanks UGC, New Delhi for the award of a ­research fellowship.
Further Information

Publication History

Received: 05 February 2017

Accepted after revision: 11 February 2018

Publication Date:
20 March 2018 (online)


Abstract

A simple and efficient l-proline-catalysed synthesis of spiro(isoxazolo[5,4-b]pyridine-5,5′-pyrimidine) derivatives in water has been accomplished through a pseudo five-component one-pot domino aza-Diels–Alder reaction involving 3-amino crotanonitrile, hydroxylamine hydrochloride, aromatic aldehydes and barbituric acids. The main advantages of the present method are mild reaction conditions, modest purification process involving no chromatographic techniques and high yields. The protocol is a good alternative to prepare spiro derivatives with readily available starting materials, which makes the method highly attractive.

Supporting Information

 
  • References and Notes

    • 2a Clarke PA. Santosa S. Martin WH. C. Green Chem. 2007; 9: 438
    • 2b Xiang H. Chen Y. He Q. Xiea Y. Yang C. RSC Adv. 2013; 3: 5807
    • 2c Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
    • 2d Bhuyan D. Sarma R. Dommaraju Y. Prajapati D. Green Chem. 2014; 16: 1158
    • 3a Touré BB. Hall DG. Multicomponent Reactions in the Total Synthesis of Natural Products. In Multicomponent Reactions. Zhu J. Bienaymé H. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim: 2005: 342-397
    • 3b Touré BB. Hall DG. Chem. Rev. 2009; 109: 4439
    • 3c Brauch S. van Berkela SS. Westermann B. Chem. Soc. Rev. 2013; 42: 4948
    • 4a Butler RN. Cunningham WJ. Coyne AG. Burke LA. J. Am. Chem. Soc. 2004; 126: 11923
    • 4b Pirrung MC. Sarma KD. J. Am. Chem. Soc. 2004; 126: 444
    • 4c Li C.-J. Chem. Rev. 2005; 105: 3095
    • 4d Butler RN. Coyne AG. Chem. Rev. 2010; 110: 6302
    • 4e Gawande MB. Bonifaćio VD. B. Luque R. Brancoa PS. Varma RS. Chem. Soc. Rev. 2013; 42: 5522
    • 5a Tietze LF. Rackelmann N. The Domino-Knoevenagel-Hetero-Diels–Alder Reaction and Related Transformations. In Multicomponent Reactions. Zhu J. Bienaymé H. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim: 2005: 121-168
    • 5b Chen Z. Wang B. Wang Z. Zhu G. Sun J. Angew. Chem. Int. Ed. 2013; 52: 2027
    • 5c Bhuyan D. Sarmah MM. Dommaraju Y. Prajapati D. Tetrahedron Lett. 2014; 55: 5133
    • 5d Dommaraju Y. Borthakur S. Prajapati D. ChemistrySelect 2016; 1: 6768
    • 6a Basaric N. Marinic Z. Sindler-Kulyk M. J. Org. Chem. 2006; 71: 9382
    • 6b Varin M. Chiaroni A. Lallemand J.-Y. Iorga B. Guillou C. J. Org. Chem. 2007; 72: 6421
    • 7a Gomez-Monterrey I. Campiglia P. Carotenuto A. Califano D. Pisano C. Vesci L. Lama T. Bertamino A. Sala M. Di Bosco AM. Grieco P. Novellino E. J. Med. Chem. 2007; 50: 1787
    • 7b Burnett DA. McKittrick BA. Int. Patent WO 2008033431, 2008 ; Chem. Abstr. 2008, 148, 369995
    • 7c Mamaghani M. Hossein Nia R. J. Heterocycl. Chem. 2017; 54: 1700
    • 8a Llona-Minguez S. Throup A. Steiner E. Lightowler M. Van der Haegen S. Homan E. Eriksson L. Stenmark P. Jenmalm-Jensen A. Helleday T. Org. Biomol. Chem. 2017; 15: 7758
    • 8b Quiroga J. Cruz S. Insuasty B. Abonía R. Nogueras M. Cobo J. Tetrahedron Lett. 2006; 47: 27
    • 8c Bhuyan D. Sarma R. Prajapati D. Tetrahedron Lett. 2012; 53: 6460
    • 8d Dandia A. Jain AK. Sharma S. Tetrahedron Lett. 2012; 53: 5270
    • 8e Byk G. Kabha E. J. Comb. Chem. 2004; 6: 596
    • 8f Kolos NN. Beryozkina TV. Yaremenko FG. Enina LS. Musatov VI. Functional Materials 2005; 12: 569
  • 9 Kalita SJ. Das B. Deka DC. SynOpen 2017; 1: 45
  • 10 Jiang B. Ma N. Wang X.-H. Tu S.-J. Li G. Heterocycles 2012; 84: 765
    • 11a Sarma R. Borah KJ. Dommaraju Y. Prajapati D. Mol. Divers. 2011; 15: 697
    • 11b Dommaraju Y. Prajapati D. Mol. Divers. 2015; 19: 173
    • 11c Dommaraju Y. Borthakur S. Rajesh N. Prajapati D. RSC Adv. 2015; 5: 24327
    • 11d Dommaraju Y. Bora S. Prajapati D. Org. Biomol. Chem. 2015; 13: 9181
  • 12 General Procedure for the Synthesis of Spiro(isoxazolo[5,4-b]pyridine-5,5′-pyrimidines) 5a–l: 3-Aminocrotanonitrile (1; 2 mmol), hydroxylamine hydrochloride (2; 2 mmol) were taken in 50-mL round-bottomed flask. To this were added l-proline (30 mol%) and H2O (10 mL) and the mixture was stirred at reflux for 10 min. Then barbituric acid (3; 2 mmol) and aromatic aldehyde 4 (4 mmol) were added and the reaction mixture was stirred for 60 min. Upon completion of the reaction (monitored by TLC) the reaction mixture was cooled to r.t. and filtered to give the crude products, which were further purified by recrystallization from 95% EtOH to obtain the analytically pure 5 as a product. 1′,3,3′-Trimethyl-4,6-diphenyl-6,7-dihydro-2′H,4H-spiro(isoxazolo[5,4-b]pyridine-5,5′-pyrimidine)-2′,4′,6′(1′H,3′H)-trione (5a): white solid; mp 185–186 °C (177–178 °C13c). 1H NMR (300 MHz, CDCl3): δ = 7.26 (ddd, J = 16.5, 10.9, 6.3 Hz, 8 H), 7.04 (d, J = 5.7 Hz, 2 H), 5.26 (d, J = 3.5 Hz, 1 H), 5.10 (d, J = 4.1 Hz, 1 H), 4.91 (s, 1 H), 2.98 (s, 3 H), 2.80 (s, 3 H), 1.70 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 170.03, 165.67, 164.78, 158.48, 149.61, 134.65, 129.82, 129.02, 128.74, 128.63, 127.12, 91.00, 64.70, 58.62, 47.92, 28.42, 27.67, 11.67. IR (KBr): 3185, 2998, 2926, 1751, 1687, 1651, 1615, 1537, 1510, 1482, 1381, 1160, 840, 775 cm–1. MS (ESI): m/z = 431.2 [M + H]+.
    • 13a Jiang B. Cao L.-J. Tu S.-J. Zheng W.-R. Yu H.-Z. J. Comb. Chem. 2009; 11: 612
    • 13b Sarmah MM. Borthakur S. Bhuyan D. Prajapati D. RSC Adv. 2015; 5: 68839
    • 13c Morozova AD. Muravyova EA. Shishkina SV. Vashchenko EV. Sen’ko YV. Chebanov VA. J. Heterocycl. Chem. 2017; 54: 932
  • 14 Reddy GV. S. Chandrappa M. Rahaman F. Murthy BN. Pullela PK. Asian J. Chem. 2017; 29: 124
  • 15 Deb ML. Bhuyan PJ. Tetrahedron Lett. 2005; 46: 6453