Synlett 2022; 33(10): 973-976
DOI: 10.1055/s-0037-1610795
letter

Copper-Mediated Direct Aromatic ortho-C–H Cyanation by AIBN

Aijun Zhou
,
Zhenlian Wang
,
Fan Chen
,
Peng-Cheng Qian
,
Jiang Cheng
We thank the National Natural Science Foundation of China (21971025), and the Wenzhou Municipal Science and Technology Bureau (ZY2020027) for their financial support.


Abstract

We have developed a copper-mediated chelation-assisted direct aromatic ortho-C–H cyanation that uses AIBN as a safe cyanation reagent. The substrate scope included indoles, pyrroles, a carbazole, and a thiophene.

Supporting Information



Publikationsverlauf

Eingereicht: 17. Februar 2022

Angenommen nach Revision: 26. März 2022

Artikel online veröffentlicht:
20. April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Hao E, Jiang X, Fu D, Wang D, Xie M, Qu G, Guo H. Youji Huaxue 2016; 36: 2746
    • 1b Saranya S, Neetha M, Aneeja T, Anilkumar G. Adv. Synth. Catal. 2020; 362: 4543
    • 1c Cui J, Song J, Liu Q, Liu H, Dong Y. Chem. Asian J. 2018; 13: 482
    • 1d Yan G, Zhang Y, Wang J. Adv. Synth. Catal. 2017; 359: 4068
    • 2a Wen Q, Jin J, Zhang L, Luo Y, Lu P, Wang Y. Tetrahedron Lett. 2014; 55: 1271
    • 2b Kanchana US, Mathew TV, Anilkumar G. J. Organomet. Chem. 2020; 920: 121337
  • 3 Ahmad MS, Indra NP, Li C. New J. Chem. 2020; 44: 17177
    • 4a Neetha M, Afsina CM. A, Aneeja T, Anilkumar G. RSC Adv. 2020; 10: 33683
    • 4b Hosseinian A, Ahmadi S, Monfared A, Kheirollahi Nezhad PD, Vessally E. Curr. Org. Chem. 2018; 22: 1862
    • 5a Ping Y, Ding Q, Peng Y. ACS Catal. 2016; 6: 5989
    • 5b Wang L, Shao Y, Cheng J. Org. Biomol. Chem. 2021; 19: 8646
    • 6a Mishra NK, Jeong T, Sharma S, Shin Y, Han S, Park J, Oh JS, Kwak JH, Jung YH, Kim IS. Adv. Synth. Catal. 2015; 357: 1293
    • 6b Yu D.-G, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
    • 6c Lv S, Li Y, Yao T, Yu X, Zhang C, Hai L, Wu Y. Org. Lett. 2018; 20: 4994
    • 6d Liu W, Richter SC, Mei R, Feldt M, Ackermann L. Chem. Eur. J. 2016; 22: 17958
    • 6e Liu M, You E, Cao W, Shi J. Asian J. Org. Chem. 2019; 8: 1850
    • 7a Xu S, Huang X, Hong X, Xu B. Org. Lett. 2012; 14: 4614
    • 7b Hong X, Wang H, Qian G, Tan Q, Xu B. J. Org. Chem. 2014; 79: 3228
  • 8 Qi C, Hu X, Jiang H. Chem. Commun. 2017; 53: 7994
    • 9a Kou X, Zhao M, Qiao X, Zhu Y, Tong X, Shen Z. Chem. Eur. J. 2013; 19: 16880
    • 9b Pan C, Jin H, Xu P, Liu X, Cheng Y, Zhu C. J. Org. Chem. 2013; 78: 9494
  • 10 Pawar AB, Chang S. Org. Lett. 2015; 17: 660
  • 11 Xu S, Teng J, Yu J.-T, Sun S, Cheng J. Org. Lett. 2019; 21: 9919
    • 12a Liu P.-Y, Zhang C, Zhao S.-C, Yu F, Li F, He Y.-P. J. Org. Chem. 2017; 82: 12786
    • 12b Liu L, Wang Z, Fu X, Yan C.-H. Org. Lett. 2012; 14: 5692
  • 13 Rong G, Mao J, Zheng Y, Yao R, Xu X. Chem. Commun. 2015; 51: 13822
  • 14 Teng F, Yu J.-T, Yang H, Jiang Y, Cheng J. Chem. Commun. 2014; 50: 12139
  • 15 Teng F, Yu J.-T, Zhou Z, Chu H, Cheng J. J. Org. Chem. 2015; 80: 2822
  • 16 Xu H, Liu P.-T, Li Y.-H, Han F.-S. Org. Lett. 2013; 15: 3354
  • 17 Heterocyclic Nitriles 2a–s; General ProcedureAn oven-dried Schlenk tube equipped with a magnetic stirring bar was charged sequentially with the appropriate heterocycle 1a–s (0.1 mmol), AIBN (82.1 mg, 0.5 mmol), Cu(OAc)2 (27.2 mg, 0.15 mmol), DMF (0.5 mL), and MeCN (1.5 mL). After evacuation and backfilling with O2 three times, the Schlenk tube was attached to an O2 balloon, and the mixture was stirred at 135 °C (oil bath) for 48 hours then cooled to r.t. The resultant mixture was poured into H2O (10 mL) and extracted with EtOAc (3 × 5 mL). The combined organic phase was dried (Na2SO4; White solid; yield: 15.5 mg (85%), Rf = 0.5 (PE–EtOAc, 5:1). 1H NMR (400 MHz, CDCl3)), filtered, and concentrated under reduced pressure to give a residue that was purified by flash column chromatography [silica gel, PE–EtOAc (10:1)].1-Pyrimidin-2-yl-1H-indole-2-carbonitrile (2a) 11White solid; yield: 15.5 mg (85%), Rf = 0.5 (PE–EtOAc, 5:1). 1H NMR (400 MHz, CDCl3): δ = 8.83 (d, J = 4.8 Hz, 2 H), 8.68 (d, J = 8.6 Hz, 1 H), 7.68 (d, J = 8.0 Hz, 1 H), 7.52–7.46 (m, 2 H), 7.34–7.30 (m, 1 H), 7.24–7.21 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 158.4, 156.6, 136.6, 127.8, 127.6, 123.6, 122.0, 121.0, 118.0, 116.2, 114.3, 108.9