Synlett 2022; 33(13): 1273-1281
DOI: 10.1055/s-0040-1719929
letter

Silver-Catalyzed, One-Pot, Three-Component Difunctionalization of Quinones: Synthesis of Indole-Functionalized p-Iminoquinone Derivatives

Yu Dong
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
,
Ji-Xian Ye
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
,
Qi-Qi Luo
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
,
Yi Zheng
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
,
Rui-Qi Zhou
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
,
Ting Mei
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
,
Xiang-Long Chen
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
,
Zhi-Chuan Shi
b   Southwest Minzu University, Chengdu 610041, P. R. of China
,
Zhong-Hui Li
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
,
Bing He
a   College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. of China
› Author Affiliations
We are grateful for the financial support from the Chengdu Normal University Project (2021CS21ZCY02), the National undergraduate training program for innovation and entrepreneurship (Grant No. 202114389016 and 202114389005), and the Foundation of Chengdu Normal University Talent Introduction Research Funding (2021YJRC202020).


Abstract

A one-pot, three-component difunctionalization of quinones with indoles and arylamines has been developed to synthesize indole functionalized p-iminoquinones derivatives. The approach employed AgOAc as the catalyst in the presence of 3-chlorophenylboronic acid, giving a series of indole functionalized p-iminoquinones derivatives in moderate to good yields. This catalytic approach represents a step-economic and convenient strategy for the difunctionalization of quinones. A plausible reaction pathway has been proposed based on a series of control experiments.

Supporting Information



Publication History

Received: 02 April 2022

Accepted after revision: 08 May 2022

Article published online:
09 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Inks ES, Josey BJ, Jesinkey SR, Chou CJ. ACS Chem. Biol. 2012; 7: 331
    • 1b Josey BJ, Inks ES, Wen X, Chou CJ. J. Med. Chem. 2013; 56: 1007
    • 1c Reichstein A, Vortherms S, Bannwitz S, Tentrop J, Prinz H, Müller K. J. Med. Chem. 2012; 55: 7273
    • 1d Roush WR, Coffey DS, Madar DJ. J. Am. Chem. Soc. 1997; 119: 11331
    • 1e Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 1f Reddy RS, Zheng S, Lagishetti C, You H, He Y. RSC Adv. 2016; 6: 68199
    • 1g You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, He Y. J. Org. Chem. 2018; 83: 4119
    • 1h Lagishetti C, Banne S, You H, Tang M, He Y. Org. Lett. 2019; 21: 5301
  • 2 Son EJ, Kim JH, Kim K, Park CB. J. Mater. Chem. A 2016; 4: 11179
    • 3a Klare JE, Tulevski GS, Sugo K, De Picciotto A, White KA, Nuckolls C. J. Am. Chem. Soc. 2003; 125: 6030
    • 3b Nowicka B, Kruk J. Biochim. Biophys. Acta 2010; 1797: 1587
    • 3c Petrangolini P, Alessandrini A, Facci P. J. Phys. Chem. C 2013; 117: 17451
    • 4a Adachi M, Murata Y, Nakamura S. J. Org. Chem. 1993; 58: 5238
    • 4b Tao W, Barra M. J. Org. Chem. 2001; 66: 2158
    • 4c Barra M, Tan A, Wong S. Dyes Pigm. 2004; 61: 63
    • 4d Vittum PW, Brown GH. J. Am. Chem. Soc. 1946; 68: 2235
    • 4e Josephy PD, Mason RP, Eling T. Carcinogenesis 1982; 3: 1227
    • 5a Imai S, Shimazu A, Furihata K, Furihata K, Hayakawa Y, Seto H. J. Antibiot. 1990; 43: 1606
    • 5b Imai S, Noguchi T, Seto H. J. Antibiot. 1993; 46: 1232
    • 5c Ren J, Liu D, Tian L, Wei Y, Proksch P, Zeng J, Lin W. Bioorg. Med. Chem. Lett. 2013; 23: 301
    • 5d Gripenberg J. Acta Chem. Scand. 1958; 12: 603
    • 5e Gomes P. cB, Nett M, Dahse H.-M, Hertweck C. J. Nat. Prod. 2010; 73: 1461
    • 5f Maskey R, Li F, Qin S, Fiebig H, Laatsch H, Chandrananimycins A. J. Antibiot. 2003; 56: 622
    • 6a Arai K, Yamamoto Y. Chem. Pharm. Bull. 1990; 38: 2929
    • 6b Kaji A, Saito R, Nomura M, Miyamoto K.-I, Kiriyama N. Biol. Pharm. Bull. 1998; 21: 945
    • 7a Mochida K, Shimizu M, Hiyama T. J. Am. Chem. Soc. 2009; 131: 8350
    • 7b Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
    • 7c Sore HF, Galloway WR, Spring DR. Chem. Soc. Rev. 2012; 41: 1845
    • 7d Yin Q, Klare HF, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 3712
  • 8 Ling T, Poupon E, Rueden EJ, Kim SH, Theodorakis EA. J. Am. Chem. Soc. 2002; 124: 12261
  • 9 Zeng F.-L, Chen X.-L, He S.-Q, Sun K, Liu Y, Fu R, Qu L.-B, Zhao Y.-F, Yu B. Org. Chem. Front. 2019; 6: 1476
  • 10 Pal S, Chatterjee R, Santra S, Zyryanov GV, Majee A. Adv. Synth. Catal. 2021; 363: 5300
  • 11 Yang J, Wang B, Zhang Y, Zhang S, He S, Shi Z.-C, Wang J.-Y. Org. Biomol. Chem. 2021; 19: 988
  • 12 Dong Y, Jiang H, Chen X.-L, Ye J.-X, Zhou Q, Gao L.-S, Luo Q.-Q, Shi ZC, Li Z.-H, He B. Synthesis 2022; 54: 2242
    • 13a Dong Y, Mei T, Ye J.-X, Chen X.-L, Jiang H, Chang B, Wang Z.-F, Shi Z.-C, Li Z.-H, He B. Org. Biomol. Chem. 2021; 19: 4593
    • 13b Dong Y, Mei T, Luo Q.-Q, Feng Q, Chang B, Yang F, Zhou H.-w, Shi Z.-C, Wang J.-Y, He B. RSC Adv. 2021; 11: 6776
    • 13c Dong Y, Ye J.-X, Luo Q.-Q, Mei T, Shen A, Huang P, Chen J, Zhang X, Xie C, Shi Z.-C. Synlett 2021; 32: 1772
    • 14a Zhang HB, Liu L, Chen YJ, Wang D, Li CJ. Adv. Synth. Catal. 2006; 348: 229
    • 14b Lisboa C. dS, Santos VG, Vaz BG, de Lucas NC, Eberlin MN, Garden SJ. J. Org. Chem. 2011; 76: 5264
    • 14c Magar KB. S, Xia L, Lee YR. Chem. Commun. 2015; 51: 8592
    • 14d Raju S, Annamalai P, Chen P.-L, Liu Y.-H, Chuang S.-C. Chem. Commun. 2017; 53: 6247
    • 14e Dong Y, Zhang H, Yang J, He S, Shi Z.-C, Zhang X.-M, Wang J.-Y. ACS Omega 2019; 4: 21567
    • 15a Jiang JH, Boominathan SS. K, Hu WP, Chen CY, Vandavasi JK, Lin YT, Wang JJ. Eur. J. Org. Chem. 2016; 2284
    • 15b Dong Y, Mei T, Luo Q.-Q, Feng Q, Chang B, Yang F, Zhou H, Shi Z.-C, Wang J.-Y, He B. RSC Adv. 2021; 11: 6776
    • 15c Zhang HB, Liu L, Chen YJ, Wang D, Li CJ. Adv. Synth. Catal. 2006; 348: 229