Synlett 2023; 34(13): 1587-1592
DOI: 10.1055/s-0042-1751434
letter

Phosphine-Mediated [3+2] Cyclization for the Synthesis of Coumarin-Based CF3-Containing Furanones

Wenhao Gan
,
Junfeng Fu
,
Zhixiang Zhou
,
Sheng Cao
,
Zhipeng Zhang
,
Yongjiang Wang
,
Xiaoyu Han
Funded by Basic Public Welfare Research Program of Zhejiang Province/International Cooperation (LGJ22B020001).


Abstract

A tertiary phosphine-mediated [3+2] cyclization reaction of ynones with fluorinated coumarin derivatives has been developed to give a series of coumarin-based CF3-containing furanones in moderate to good yields under mild reaction conditions. Preliminary investigation into their antitumor activities is also presented.

Supporting Information



Publikationsverlauf

Eingereicht: 28. Dezember 2022

Angenommen nach Revision: 06. März 2023

Artikel online veröffentlicht:
05. April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Chang CS, Negishi M, Nakano T, Morizawa Y, Matsumura Y, Ichikawa A. Prostaglandins 1997; 53: 83
    • 1b Kumari N, Mishra CB, Prakash A, Kumar N, Mongre R, Luthra PM. Neurosci. Lett. 2014; 558: 203
    • 1c Chand K, Hiremathad A, Singh M, Santos MA, Keri RS. Pharmacol. Rep. 2017; 69: 281
    • 1d Boselli E, Grob K, Lercker G. J. Agric. Food Chem. 2000; 48: 2868
    • 1e Sofia MJ, Bao D, Chang W, Du J, Nagarathnam D. J. Med. Chem. 2010; 53: 7202
    • 1f Hasegawa F, Niidome K, Migihashi C, Murata M, Negoro T. Bioorg. Med. Chem. Lett. 2014; 24: 4266
    • 1g Rao AU, Xiao D, Huang X, Zhou W, Fossetta J. Bioorg. Med. Chem. Lett. 2012; 22: 1068
    • 1h Kirsch G, Abdelwahab A, Chaimbault P. Molecules 2016; 21: 1322
    • 1i Viola G, Vedaldi D, Basso G, Disarò S. Chem. Biodiversity 2004; 1: 1265
    • 1j Fernández S, Sanghvi YS, Theodorakis EA, Detorio MA. Bioorg. Med. Chem. 2012; 20: 6885
    • 1k Wang J, Aceña JL, Sorochinsky AE. Chem. Rev. 2014; 114: 2432
    • 1l Johnson BM, Shu YZ, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
    • 1m Zhou Y, Wang J, Gu Z, Wang S, Zhu W. Chem. Rev. 2016; 116: 422
    • 2a Hamel JD, Paquin JF. J. Fluorine Chem. 2018; 216: 11
    • 2b Wang Y, Jiang M, Liu JT. Adv. Synth. Catal. 2016; 358: 1322
    • 2c Ghosh M, Mishra S, Monir K, Hajra A. Org. Biomol. Chem. 2015; 13: 309
    • 2d Hu F, Xia Y, Ma C, Zhang Y, Wang J. J. Org. Chem. 2016; 81: 3275
    • 2e Nejrotti S, Prandi C. Synthesis 2021; 53: 1046
    • 2f Moran WJ, Rodríguez A. Org. Prep. Proced. Int. 2012; 44: 103
    • 2g Xia Y, Liu Z, Ge R, Xiao Q, Zhang Y. Chem. Commun. 2015; 51: 11233
    • 2h Panferova LI, Chernov GN, Levin VV, Kokorekin VA, Dilman AD. Tetrahedron 2018; 74: 7136
    • 2i Quach R, Brimble MA. Org. Biomol. Chem. 2014; 12: 7423
    • 2j Duc DX. Mini-Rev. Org. Chem. 2019; 16: 422
    • 2k Serdyuk O, Butin A, Abaev V. J. Fluorine Chem. 2010; 131: 296
    • 2l Deepthi A, Babu BP, Balachandran AL. Org. Prep. Proced. Int. 2019; 51: 409
    • 2m Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 3a Xu Z, Lu X. J. Org. Chem. 1998; 63: 5031
    • 3b Ma D, Yu Y, Lu X. J. Org. Chem. 1989; 54: 1105
    • 3c Xu Z, Lu X. Tetrahedron Lett. 1997; 38: 3461
    • 3d Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
    • 3e Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 4a Xie C, Smaligo AJ, Song XR, Kwon O. ACS Cent. Sci. 2021; 7: 536
    • 4b Wang X, Lu M, Su Q, Zhou M, Addepalli Y. Chem. Asian J. 2019; 14: 3409
    • 4c Chan W, Tang X, Zhang F, Quek G, Lu Y. Angew. Chem. Int. Ed. 2019; 58: 6260
    • 4d Vagh SS, Hou BJ, Edukondalu A, Wang PC, Lin W. Org. Lett. 2021; 23: 842
    • 4e Ni H, Chan WL, Lu Y. Chem. Rev. 2018; 118: 9344
    • 4f Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 4g Wang Z, Xu X, Kwon O. Chem. Soc. Rev. 2014; 43: 2927
    • 4h Koay WL, Mei GJ, Lu Y. Org. Chem. Front. 2021; 8: 968
    • 4i Tasdan Y, Mei GJ, Lu Y. Sci. Bull. 2020; 65: 557
    • 4j Mei G, Tang X, Tasdan Y, Lu Y. Angew. Chem. Int. Ed. 2020; 59: 648
    • 4k Li H, Lu Y. Asian J. Org. Chem. 2017; 6: 1130
    • 4l Tang X, Tan CX. A, Chan WL, Zhang F, Lu Y. ACS Catal. 2021; 11: 1361
    • 4m Li K, Gonçalves TP, Huang K, Lu Y. Angew. Chem. Int. Ed. 2019; 58: 5427
    • 4n Wu M, Han Z, Li K, Wu J, Lu Y. J. Am. Chem. Soc. 2019; 141: 16362
    • 4o Mei GJ, Zheng W, Gonçalves TP, Tang X, Lu Y. iScience 2020; 23: 100873
    • 4p Wang T, Han X, Zhong F, Yao W, Lu Y. Acc. Chem. Res. 2016; 49: 1369
    • 4q Tan CX. A, Li R, Zhang F, Dai L, Ullah N, Lu Y. Angew. Chem. Int. Ed. 2022; 61: e202209494
    • 4r Zhang F, Dai X, Dai L, Zheng W, Chan W.-L, Tang X, Zhang X, Lu Y. Angew. Chem. Int. Ed. 2022; 61: e202203212
    • 4s Wu M, Han Z, Ni H, Wang N, Lu Y. Chem. Sci. 2022; 13: 3161
    • 4t Ramachary DB, Venkaiah C, Krishna PM. Org. Lett. 2013; 15: 4714
    • 4u Ramachary DB, Krishna PM, Reddy TP. Org. Biomol. Chem. 2016; 14: 6413
    • 4v Zhang Y, Sun Y, Wei Y, Shi M. Adv. Synth. Catal. 2019; 361: 2129
    • 4w Liang L, Li E, Xie P, Huang Y. Chem. Asian J. 2014; 9: 1270
    • 4x Zhang K, Cai L, Hong S, Kwon O. Org. Lett. 2019; 21: 5143
    • 4y Yang L, Xie P, Li E, Li X, Chen R. Org. Biomol. Chem. 2012; 10: 7628
    • 4z Sun YL, Wei Y, Shi M. Adv. Synth. Catal. 2017; 359: 3176
    • 4aa Liang L, Huang Y. Org. Lett. 2016; 18: 2604
    • 4ab Gao X, Li Z, Yang W, Liu Y, Guo H. Org. Biomol. Chem. 2017; 15: 5298
    • 4ac Kuroda H, Tomita I, Endo T. Org. Lett. 2003; 5: 129
    • 4ad Raghu M, Grover J, Ramasastry SS. V. Chem. Eur. J. 2016; 22: 18316
    • 5a Vijesh AM, Isloor AM, Prabhu V, Ahmad S, Malladi S. Eur. J. Med. Chem. 2010; 45: 5460
    • 5b Symeonidis T, Chamilos M, Kallitsakis M, Litinas KE. Bioorg. Med. Chem. Lett. 2009; 19: 1139
    • 5c Gnerre C, Catto M, Leonetti F, Weber P, Carrupt PA. J. Med. Chem. 2000; 43: 4747
    • 5d Leonetti F, Favia A, Rao A, Aliano R, Paluszcak A. J. Med. Chem. 2004; 47: 6792
    • 5e Musa M, Cooperwood J, Khan MO. Curr. Med. Chem. 2008; 15: 2664
  • 6 Spino C, Dodier M, Sotheeswaran S. Bioorg. Med. Chem. Lett. 1998; 8: 3475
  • 7 Anand P, Singh B, Singh N. Bioorg. Med. Chem. 2012; 20: 1175
  • 8 Quezada E, Delogu G, Picciau C, Santana L, Podda G. Molecules 2010; 15: 270
    • 9a Mulakayala N. Bioorg. Med. Chem. 2012; 20: 759
    • 9b Shaikh F, Shastri SL, Naik NS, Kulkarni R, Sunagar V. ChemistrySelect 2019; 4: 105
    • 9c Zeynizadeh B, Gilanizadeh M. New J. Chem. 2019; 43: 18794
    • 9d Mishra R. RSC Adv. 2016; 6: 24464
    • 9e Vyasamudri S, Yang DY. J. Org. Chem. 2019; 84: 3662
    • 9f Prasad JV, Reddy JS, Kumar NR, Solomon KA, Gopikrishna G. J. Chem. Sci. 2011; 123: 673
    • 9g Patil PO, Bari SB, Firke SD, Deshmukh PK, Patil DA. Bioorg. Med. Chem. 2013; 21: 2434
    • 9h Iaroshenko VO. Tetrahedron Lett. 2011; 52: 373
    • 9i Vellakkaran M, Hong S. Asian J. Org. Chem. 2021; 10: 1012
    • 9j Jin C, Yan Z, Sun B, Yang J. Org. Lett. 2019; 21: 2064
    • 9k Katritzky A, Ibrahim T, Tala S, Abo-Dya N, El-Feky S. Synthesis 2011; 1494
    • 9l Alizadeh A, Jamal P. Synlett 2018; 29: 1107
    • 9m Yu T, Zhao M, Li A, Zhao Y, Fan D. Res. Chem. Int. 2013; 39: 2259
    • 9n Lon M. Biomolecules 2020; 10: 151
    • 9o Kamble AA. Med. Chem. Res. 2016; 25: 1163
    • 9p Alizadeh A. Tetrahedron 2018; 74: 2085
    • 9q Mirzaei S, Rajai-Daryasarei S, Soheilizad M, Kabiri R, Pashazadeh R. Synthesis 2019; 51: 1680
    • 9r Banerjee A, Santra SK, Khatun N, Ali W, Patel BK. Chem. Commun. 2015; 51: 15422
    • 9s Shin Y, Yoo C, Moon Y, Lee Y, Hong S. Chem. Asian J. 2015; 10: 878
    • 9t Wang Y, Yu ZH, Zheng HF, Shi DQ. Org. Biomol. Chem. 2012; 10: 7739
    • 9u Cerqueira AF. R, Almodôvar VA. S. Molecules 2017; 22: 994
    • 9v Han X, Lu X. Org. Lett. 2010; 12: 108
    • 9w Dong C, Alper H. J. Org. Chem. 2004; 69: 5011
    • 9x Alden-Danforth E, Scerba MT, Lectka T. Org. Lett. 2008; 10: 4951
    • 9y Davoodi F, Dekamin MG, Alirezvani Z. Appl. Organomet. Chem. 2019; 33: 4735
  • 10 Han X, Ni H, Chan WL, Gai X, Lu Y. Org. Biomol. Chem. 2016; 14: 5059
  • 11 Fu J, Chen P, Liu W, Han X. Org. Chem. Front. 2021; 8: 6323
  • 12 Huang Q, Fu J, Gan W, Han X. Synlett 2022; 33: 1282
    • 13a Ramachary DB, Krishna PM, Reddy TP. Org. Biomol. Chem. 2016; 14: 6413
    • 13b Gao Z, Wang C, Yuan C, Xiao Y, Guo H. Chem. Commun. 2015; 51: 12653
    • 13c Liang L, Li E, Xie P, Huang Y. Chem. Asian J. 2014; 9: 1270
    • 13d Yang L, Xie P, Li E, Huang Y, Chen R. Org. Biomol. Chem. 2012; 10: 7628
    • 13e Gao X, Li Z, Yang W, Liu Y, Guo H. Org. Biomol. Chem. 2017; 15: 5298
  • 14 General Synthetic Method for Compound 3a–p To a solution of 2,2,2-trifluoroacetaldehyde coumarin 1 (0.2 mmol, 1.0 equiv) and ynone 2 (0.30 mmol, 1.5 equiv) in TFE (2 mL) was added PPh2Et (0.2 mmol, 1.0 equiv), followed by the addition of PhCOOH (0.06 mmol, 0.3 equiv). The resulting mixture was stirred under nitrogen atmosphere at 60 °C for 2–4 h. Upon completion of the reaction, the solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 20:1 to 3:1) to afford cyclization adduct 3. (Z)-3-[5-Benzylidene-4-oxo-2-(trifluoromethyl)tetrahydrofuran-2-yl]-2H-chromen-2-one (3a) 67.9 mg, 88% yield; a yellow solid; mp 166.5–166.8 °C. 1H NMR (500 MHz, CDCl3): δ = 8.27 (s, 1 H), 7.88–7.77 (m, 2 H), 7.69–7.58 (m, 2 H), 7.54–7.46 (m, 2 H), 7.43–7.33 (m, 3 H), 6.50 (s, 1 H), 3.43 (dd, J = 51.6, 19.5 Hz, 2 H). 19F NMR (471 MHz, CDCl3): δ = –79.53. 13C NMR (126 MHz, CDCl3): δ = 194.3, 158.2, 154.0, 144.7, 143.7, 133.4, 132.6, 130.5, 129.3, 129.2, 129.0, 125.0, 123.9 (q, J = 284.8 Hz), 121.6, 117.9, 116.7, 108.0, 82.1 (q, J = 31.5 Hz), 40.1. HRMS: m/z calcd for C21H14F3O4 [M + H]+ = 387.0843; found: 387.0839. Crystal Data for C21H13F3O4 (3a) M = 386.31 g/mol; monoclinic, space group P21/n (no. 14), a = 9.6912(10) Å, b = 16.2258(16) Å, c = 11.1571(11) Å, β = 105.913(3) , V = 1687.2(3) Å3, Z = 4, T = 170.00 K, μ(Ga Kα) = 0.695 mm–1, Dcalc = 1.521 g/cm3, 31154 reflections measured (8.596° ≤ 2Θ ≤ 121.276°), 3813 unique (R int = 0.0553, R σ = 0.0458) which were used in all calculations. The final R 1 was 0.0425 (I > 2σ(I)) and wR 2 was 0.1163 (all data).
  • 15 CCDC 2243264 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 16a Lian Z, Wei Y, Shi M. Tetrahedron 2012; 68: 2401
    • 16b Chen Q, Li K, Lu T, Zhou Q. RSC Adv. 2016; 6: 24792
    • 16c Zhou QF, Chu XP, Ge FF, Wang Y, Lu T. Adv. Synth. Catal. 2013; 355: 2787
    • 16d Wang HH, Shi T, Gao WW, Wang YQ, Wang Z. Org. Biomol. Chem. 2017; 15: 8013
    • 16e Sriramurthy V, Kwon O. Org. Lett. 2010; 12: 1084
    • 16f Khong SN, Kwon O. Molecules 2012; 17: 5626
    • 16g Sriramurthy V, Barcan GA, Kwon O. J. Am. Chem. Soc. 2007; 129: 12928
    • 17a Creech GS, Zhu XF, Fonovic B, Dudding T, Kwon O. Tetrahedron 2008; 64: 6935
    • 17b Wilson JE, Sun J, Fu GC. Angew. Chem. Int. Ed. 2010; 49: 161
    • 17c Siby A, Loreau O, Taran F. Synthesis 2009; 2365
    • 17d Kuroda H, Tomita I, Endo T. Org. Lett. 2003; 5: 129
    • 18a Vuluga D, Legros J, Crousse B, Slawin AM. Z, Laurence C. J. Org. Chem. 2011; 76: 1126
    • 18b Vymětal J, Bednárová L, Vondrášek J. J. Phys. Chem. B 2016; 120: 1048
    • 18c Glinkerman CM, Boger DL. J. Am. Chem. Soc. 2016; 138: 12408
    • 18d Anderson VL, Webb WW. Biophys. J. 2012; 102: 897
    • 18e Wen H, Wang L, Xu L, Hao Z, Shao C.-L, Wang C.-Y, Xiao J. Adv. Synth. Catal. 2015; 357: 4023