Planta Med 2017; 83(12/13): 1068-1075
DOI: 10.1055/s-0043-105499
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Fast and Green – CO2 Based Extraction, Isolation, and Quantification of Phenolic Styrax Constituents[*]

Johanna Scheuba
Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Valerie-Katharina Wronski
Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Judith M. Rollinger
Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Ulrike Grienke
Department of Pharmacognosy, University of Vienna, Vienna, Austria
› Author Affiliations
Further Information

Publication History

received 25 January 2017
revised 23 February 2017

accepted 04 March 2017

Publication Date:
16 March 2017 (online)

Abstract

In this study the first supercritical fluid based protocol for the extraction, analysis, and isolation of six polar compounds, i.e., o-vanillin (1), styracin (2), vanillin (3), trans-cinnamic acid (4), vanillic acid (5), and shikimic acid (6), was developed. First, eight styrax resin products (R1–R8) obtained from various Liquidambar tree species, which are known to contain compounds 26, were extracted with a 1 : 1 mixture of supercritical CO2 and EtOH. Within 4 minutes, the compounds were successfully baseline separated on an Acquity UPC2 BEH 2-EP (3.0 × 100 mm, 1.7 µm) column using a mobile phase of supercritical CO2 and MeOH with 0.1 % phosphoric acid. The compounds were quantified and the method was validated according to current ICH guidelines. Scaling up to preparative supercritical fluid chromatography using a Viridis BEH 2-EP (10 × 250 mm, 5 µm) column allowed for a fast separation and isolation of the selected constituents 2 and 4 from R6 within 7 minutes. This supercritical fluid protocol is easily adaptable to compounds of similar polarity. The increase in speed and its environmental friendliness underline its superiority over conventional set-ups.

* Dedicated to Professor Dr. Max Wichtl in recognition of his outstanding contribution to pharmacognosy research.


Supporting Information

Chromatograms (UPC2) showing the method development and the eight resin products (R1–R8) with optimised parameters, as well as chromatograms (HPLC) of isolated pure compounds 2 and 4 including relevant mass spectra are available as Supporting Information.

 
  • References

  • 1 Saito M. History of supercritical fluid chromatography: Instrumental development. J Biosci Bioeng 2013; 115: 590-599
  • 2 Klesper E, Corwin AH, Turner DA. High pressure gas chromatography above critical temperatures. J Org Chem 1962; 27: 700-701
  • 3 Novakova L, Perrenoud AGG, Francois I, West C, Lesellier E, Guillarme D. Modern analytical supercritical fluid chromatography using columns packed with sub-2 µm particles: A tutorial. Anal Chim Acta 2014; 824: 18-35
  • 4 Sánchez-Camargo AD, Parada-Alfonso F, Ibáñez E, Cifuentes A. On-line coupling of supercritical fluid extraction and chromatographic techniques. J Sep Sci 2017; 40: 213-227
  • 5 Rajendran A. Design of preparative-supercritical fluid chromatography. J Chromatogr A 2012; 1250: 227-249
  • 6 Ebinger K, Weller HN, Kiplinger J, Lefebvre P. Evaluation of a new preparative supercritical fluid chromatography system for compound library purification: The TharSFC SFC-MS Prep-100 system. J Lab Autom 2011; 16: 241-249
  • 7 Lemasson E, Bertin S, West C. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification. J Sep Sci 2016; 39: 212-233
  • 8 Desfontaine V, Guillarme D, Francotte E, Novakova L. Supercritical fluid chromatography in pharmaceutical analysis. J Pharmaceut Biomed 2015; 113: 56-71
  • 9 Hartmann A, Ganzera M. Supercritical fluid chromatography – Theoretical background and applications on natural products. Planta Med 2015; 81: 1570-1581
  • 10 Winderl B, Schwaiger S, Ganzera M. Fast and improved separation of major coumarins in Ammi visnaga (L.) Lam. by supercritical fluid chromatography. J Sep Sci 2016; 39: 4042-4048
  • 11 Pfeifer I, Murauer A, Ganzera M. Determination of coumarins in the roots of Angelica dahurica by supercritical fluid chromatography. J Pharm Biomed Anal 2016; 129: 246-251
  • 12 Ganzera M. Supercritical fluid chromatography for the separation of isoflavones. J Pharm Biomed Anal 2015; 107: 364-369
  • 13 Aichner D, Ganzera M. Analysis of anthraquinones in rhubarb (Rheum palmatum and Rheum officinale) by supercritical fluid chromatography. Talanta 2015; 144: 1239-1244
  • 14 Qi NL, Gong X, Feng CP, Wang XX, Xu YW, Lin LJ. Simultaneous analysis of eight vitamin E isomers in Moringa oleifera Lam. leaves by ultra performance convergence chromatography. Food Chem 2016; 207: 157-161
  • 15 Zhao TJ, Qi HY, Chen J, Shi YP. Quantitative analysis of five toxic alkaloids in Aconitum pendulum using ultra-performance convergence chromatography (UPC2) coupled with mass spectrometry. Rsc Adv 2015; 5: 103869-103875
  • 16 Murauer A, Ganzera M. Quantitative determination of lactones in Piper methysticum (Kava-Kava) by supercritical fluid chromatography. Planta Med 2017; DOI: 10.1055/s-0043-100632.
  • 17 Song W, Qiao X, Liang WF, Ji S, Yang L, Wang Y, Xu YW, Yang Y, Guo DA, Ye M. Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: From analytical to preparative scale. J Sep Sci 2015; 38: 3450-3453
  • 18 Zhao Y, McCauley J, Pang X, Kang LP, Yu HS, Zhang J, Xiong CQ, Chen R, Ma BP. Analytical and semipreparative separation of 25 (R/S)-spirostanolsaponin diastereomers using supercritical fluid chromatography. J Sep Sci 2013; 36: 3270-3276
  • 19 Pastorova I, Weeding T, Boon JJ. 3-phenylpropanylcinnamate, a copolymer unit in Siegburgite fossil resin: a proposed marker for the Hammamelidaceae. Org Geochem 1998; 29: 1381-1393
  • 20 Chalchat JC, Garry RP, Mathieu JP. Composition of the volatile fraction from Honduras styrax, Liquidambar styraciflua L. J Essent Oil Res 1994; 6: 73-75
  • 21 Burger P, Casale A, Kerdudo A, Michel T, Laville R, Chagnaud F, Fernandez X. New insights in the chemical composition of benzoin balsams. Food Chem 2016; 210: 613-622
  • 22 Wang F, Cui HH, Wang SM. Studies on chemical constituents of Styrax. Zhongguo Shiyan Fangjixue Zazhi 2011; 17: 89-91
  • 23 Hafizoglu H. Analytical studies on the balsam of Liquidambar orientalis Mill by gas-chromatography and mass-spectrometry. Holzforschung 1982; 36: 311-313
  • 24 Hoey MT, Parks CR. Isozyme divergence between Eastern Asian, North-American, and Turkish Species of Liquidambar (Hamamelidaceae). Am J Bot 1991; 78: 938-947
  • 25 Lingbeck JM, OʼBryan CA, Martin EM, Adams JP, Crandall PG. Sweetgum: An ancient source of beneficial compounds with modern benefits. Pharmacogn Rev 2015; 9: 1-11
  • 26 Ocsel H, Teke Z, Sacar M, Kabay B, Duzcan SE, Kara IG. Effects of oriental sweet gum storax on porcine wound healing. J Invest Surg 2012; 25: 262-270
  • 27 Guo J, Duan JA, Tang Y, Li Y. Sedative and anticonvulsant activities of styrax after oral and intranasal administration in mice. Pharm Biol 2011; 49: 1034-1038
  • 28 Sağdic O, Ozkan G, Ozcan M, Ozcelik S. A study on inhibitory effects of Sigla tree (Liquidambar orientalis Mill. var. orientalis) storax against several bacteria. Phytother Res 2005; 19: 549-551
  • 29 Lee YS, Kim J, Lee SG, Oh E, Shin SC, Park IK. Effects of plant essential oils and components from Oriental sweetgum (Liquidambar orientalis) on growth and morphogenesis of three phytopathogenic fungi. Pestic Biochem Phys 2009; 93: 138-143
  • 30 Yao F, Qiu Q, Cui Z, Su D. Chemical components of essential oils from Liquidambar orientalis Mill. Yaowu Fenxi Zazhi 2005; 25: 859-862
  • 31 Fukuda Y, Yamada T, Wada SI, Sakai K, Matsunaga S, Tanaka R. Lupane and oleanane triterpenoids from the cones of Liquidamber styraciflua . J Nat Prod 2006; 69: 142-144
  • 32 Dat NT, Lee IS, Cai XF, Shen G, Kim YH. Oleanane triterpenoids with inhibitory activity against NFAT transcription factor from Liquidambar formosana . Biol Pharm Bull 2004; 27: 426-428
  • 33 Chien SC, Xiao JH, Tseng YH, Kuo YH, Wang SY. Composition and antifungal activity of balsam from Liquidambar formosana Hance. Holzforschung 2013; 67: 345-351
  • 34 Kalogeropoulos N, Konteles SJ, Troullidou E, Mourtzinos I, Karathanos VT. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem 2009; 116: 452-461
  • 35 Fache M, Boutevin B, Caillol S. Vanillin production from lignin and its use as a renewable chemical. Acs Sustain Chem Eng 2016; 4: 35-46
  • 36 Su D, Yao F, Shi Z. Supercritical carbon dioxide extraction and analysis of chemical components in Liquidambar orientalis Mill. Huaxi Yaoxue Zazhi 2005; 20: 409-411
  • 37 Prince PSM, Dhanasekar K, Rajakumar S. Preventive effects of vanillic acid on lipids, bax, bcl-2 and myocardial infarct size on isoproterenol-induced myocardial infarcted rats: A biochemical and in vitro study. Cardiovasc Toxicol 2011; 11: 58-66
  • 38 Hovaneissian M, Archier P, Mathe C, Culioli G, Vieillescazes C. Analytical investigation of styrax and benzoin balsams by HPLC-PAD-fluorimetry and GC-MS. Phytochem Analysis 2008; 19: 301-310
  • 39 Gurbuz I, Yesilada E, Demirci B, Sezik E, Demirci F, Baser KH. Characterization of volatiles and anti-ulcerogenic effect of Turkish sweetgum balsam (Styrax liquidus). J Ethnopharmacol 2013; 148: 332-336
  • 40 Ma L, Li WL, Qin LP, Yao S. Identification of volatile components in grafted Liquidambar orientalis Mill. Adv Mat Res 2013; 641–642: 773-776
  • 41 Modugno F, Ribechini E, Colombini MP. Aromatic resin characterisation by gas chromatography-mass spectrometry. Raw and archaeological materials. J Chromatogr A 2006; 1134: 298-304
  • 42 Fernandez X, Lizzani-Cuvelier L, Loiseau AM, Perichet C, Delbecque C, Arnaudo JF. Chemical composition of the essential oils from Turkish and Honduras Styrax. Flavour Frag J 2005; 20: 70-73
  • 43 ICH (The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use). Guideline: Validation of analytical Procedures: Text and Methodology, Q2(R1). Geneva: ICH; 2005: 1-13
  • 44 Enrich LB, Scheuermann ML, Mohadjer A, Matthias KR, Eller CF, Newman MS, Fujinaka M, Poon T. Liquidambar styraciflua: a renewable source of shikimic acid. Tetrahedron Lett 2008; 49: 2503-2505
  • 45 Martin E, Duke J, Pelkki M, Clausen EC, Carrier DJ. Sweetgum (Liquidambar styraciflua L.): extraction of shikimic acid coupled to dilute acid pretreatment. Appl Biochem Biotechnol 2010; 162: 1660-1668
  • 46 Hager H, Greiner S, Heubl G, Stahl-Biskup E, Hänsel R, Keller K, Rimpler H, Schneider G. Hagers Handbuch der Pharmazeutischen Praxis: Drogen P – Z Folgeband 2. Berlin: Springer; 2013: 836-843