Synlett 2002(12): 2019-2022
DOI: 10.1055/s-2002-35560
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Sultones by Ring Closing Metathesis

Sandra Karsch, Pia Schwab, Peter Metz*
Institut für Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
Fax: +49(351)46333162; e-Mail: peter.metz@chemie.tu-dresden.de;
Weitere Informationen

Publikationsverlauf

Received 11 September 2002
Publikationsdatum:
20. November 2002 (online)

Abstract

Unsaturated sultones with normal, medium and large ring sizes were efficiently synthesized by ring closing metathesis of sulfonates. The required substrates were readily derived from alkenols and olefinic sulfonyl chlorides.

    References

  • For reviews on sultone chemistry, see:
  • 1a Metz P. J. Prakt. Chem.  1998,  340:  1 
  • 1b Buglass AJ. Tillett JG. In The Chemistry of Sulfonic Acids, Esters and their Derivatives   Patai S. Rappoport Z. Wiley; New York: 1991.  p.789 
  • 1c Roberts DW. Williams DL. Tetrahedron  1987,  43:  1027 
  • Selected recent synthetic applications of sultones:
  • 2a Wang Y. Bernsmann H. Gruner M. Metz P. Tetrahedron Lett.  2001,  42:  7801 
  • 2b Plietker B. Seng D. Fröhlich R. Metz P. Eur. J. Org. Chem.  2001,  3669 
  • 2c Jiang LS. Chan WH. Lee AWM. Tetrahedron  1999,  55:  2245 
  • 2d Meiners U. Cramer E. Fröhlich R. Wibbeling B. Metz P. Eur. J. Org. Chem.  1998,  2073 
  • 2e Doye S. Hotopp T. Wartchow R. Winterfeldt E. Chem.-Eur. J.  1998,  4:  1480 
  • 2f Chan WH. Lee AWM. Jiang LS. Mak TCW. Tetrahedron: Asymmetry  1997,  8:  2501 
  • For current reviews on ring closing metathesis, see:
  • 3a Trnka TM. Grubbs RH. Acc. Chem. Res.  2001,  34:  18 
  • 3b Fürstner A. Angew. Chem. Int. Ed  2000,  39:  3012 ; Angew. Chem. 2000, 112, 3140
  • 3c Yet L. Chem. Rev.  2000,  100:  2963 
  • For ring closing metathesis to sultams, see:
  • 4a Wanner J. Harned AM. Probst DA. Poon KWC. Klein TA. Snelgrove KA. Hanson PR. Tetrahedron Lett.  2002,  43:  917 
  • 4b Lane C. Snieckus V. Synlett  2000,  1294 
  • 4c Long DD. Termin AP. Tetrahedron Lett.  2000,  41:  6743 
  • 4d Brown RCD. Castro JL. Moriggi J.-D. Tetrahedron Lett.  2000,  41:  3681 
  • 4e Hanson PR. Probst DA. Robinson RE. Yau M. Tetrahedron Lett.  1999,  40:  4761 
  • 5a Rondestvedt CS. J. Am. Chem. Soc.  1954,  76:  1926 
  • 5b Truce WE. Norell JR. J. Am. Chem. Soc.  1963,  85:  3231 
  • 5c Dauban P. Dodd RH. Org. Lett.  2000,  2:  2327 
  • 6 For preparation of 4e, see: Brunel Y. Rousseau G. J. Org. Chem.  1996,  61:  5793 
  • 7 For a similar preparation of 5b, see: King JF. Loosmore SM. Aslam M. Lock JD. McGarrity MJ. J. Am. Chem. Soc.  1982,  104:  7108 
  • 8 For an alternative preparation of 5f and 5g, see: Visgert RV. Skrypnik YG. Russ. J. Org. Chem.  1970,  6:  2068 
  • 11a Bonini BF. Kemperman G. Willems STH. Fochi M. Mazzanti G. Zwanenburg B. Synlett  1998,  1411 
  • 11b Moiseenkov AM. Polunin EV. Zaks IM. Russ. Chem. Bull.  1984,  33:  2519 
  • 11c Schonk RM. Bakker BH. Cerfontain H. Recl. Trav. Chim. Pays-Bas  1993,  112:  201 
  • For ring closing metathesis to α,β-unsaturated lactones using ruthenium carbene complexes with NHC ligands, see e.g.:
  • 13a Held C. Fröhlich R. Metz P. Adv. Synth. Catal.  2002,  344:  720 
  • 13b Nakashima K. Imoto M. Miki T. Miyake T. Fujisaki N. Fukunaga S. Mizutani R. Sono M. Tori M. Heterocycles  2002,  56:  85 
  • 13c Lee CW. Grubbs RH. J. Org. Chem.  2001,  66:  7155 
  • 13d Chatterjee AK. Morgan JP. Scholl M. Grubbs RH. J. Am. Chem. Soc.  2000,  122:  3783 
  • 13e Fürstner A. Thiel OR. Ackermann L. Schanz H.-J. Nolan SP. J. Org. Chem.  2000,  65:  2204 
9

General Procedure: To an ice-cooled soln of alcohol 4 (1 mmol), DMAP (0.1 mmol) and triethylamine (1.2 mmol) in CH2Cl2 (10 mL) was added dropwise sulfonyl chloride 3 (1.2 mmol). Stirring was continued at 0 °C for the time indicated in Table [1] . The mixture was washed with cold water (7.5 mL), 1 N HCl (7.5 mL) and sat. aq NaHCO3 (7.5 mL). After drying the organic layer over MgSO4, the solvent was evaporated and the residue was subjected to bulb to bulb distillation to give the pure sulfonate 5. To a stirred soln of sulfonate 5 in CH2Cl2 was added catalyst 2 in small portions at 40 °C. The reaction conditions are listed in Table [2] . After the reaction had stopped, the solvent was evaporated and the residue was purified by flash chromatography. Compound 6j: 1H NMR (500 MHz, CDCl3): δ = 1.71-1.76 (m, 2 H, 5-H), 1.80-1.84 (m, 2 H, 6-H), 2.37-2.41 (m, 2 H, 4-H), 3.89 (d, J 1,2 = 7.9 Hz, 2 H, 1-H), 4.36-4.38 (m, 2 H, 7-H), 5.60-5.65 (m, 1 H, 2-H), 5.86-5.92 (m, 1 H, 3-H). 13C NMR (125.8 MHz, CDCl3): δ = 24.85 (t, C-5), 25.98 (t, C-4), 26.47 (t, C-6), 49.43 (t, C-1), 73.51 (t, C-7), 115.96 (d, C-2), 139.57 (d, C-3).

10

Sultones 6a (see ref. [2c] and ref. [11a] ), 6f (see ref. [11b] ) and 6g (see ref. [11c] ) are known compounds.

12

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-187416. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk).