Synthesis 2007(20): 3147-3154  
DOI: 10.1055/s-2007-990784
PAPER
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of the 3-Aminopropyl Glycosides of α-d-Xyl-(1→3)-β-d-Glc and α-d-Xyl-(1→3)-α-d-Xyl-(1→3)-β-d-Glc and of Their Corresponding N-Octanoyl Derivatives

Vadim Krylova, Nadezhda Ustyuzhaninab, Alexey Grachevb, Hans Bakkerc, Nikolay Nifantiev*b
a Higher Chemical College, Russian Academy of Sciences, Miusskaya Square 9, 125047 Moscow, Russian Federation
b Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
Fax: +7(495)1358784; e-Mail: nen@ioc.ac.ru;
c Hannover Medical School (MHH), Department of Cellular Chemistry OE4330, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
Further Information

Publication History

Received 1 June 2007
Publication Date:
21 September 2007 (online)

Abstract

The stereoselective synthesis of the spacer-armed disaccharide α-d-Xyl-(1→3)-β-d-Glc-O-(CH2)3NH2 and trisaccharide α-d-Xyl-(1→3)-α-d-Xyl-(1→3)-β-d-Glc-O-(CH2)3NH2, as well as of their N-octanoyl derivatives, was performed for their subsequent use as acceptors and reference samples in xylosyltransferase assays. These structures are found as O-linked glycans on epidermal growth factor (EGF) domains of several blood-clotting factors and Notch. The target products were prepared by glycosylation with a 3-O-acetylated xylosyl donor that was previously found to be an effective α-xylosylating agent. However, in this paper we show that the structure of the glycosyl acceptor could influence the stereochemical results of the glycosylation and even lead to reversed stereoselectivity in the case of one acceptor.

    References

  • 1 Minamida S. Aoki K. Natsuka S. Omichi K. Fukase K. Kusumoto S. Hase S. J. Biochem. (Tokyo)  1996,  120:  1002 
  • 2 Hase S. Kawabata S. Nishimura H. Takeya H. Sueyoshi T. Miyata T. Iwanaga S. Takao T. Shimonishi Y. Ikenaka T. J. Biochem. (Tokyo)  1988,  104:  867 
  • 3 Bjoern S. Foster DC. Thim L. Wieberg FC. Christensen M. Komiyama Y. Pedersen AH. Kisiel W. J. Biol. Chem.  1991,  266:  11051 
  • 4 Moloney DJ. Shair L. Lu FM. Xia J. Locke R. Matta KL. Haltiwanger RS. J. Biol. Chem.  2000,  275:  9604 
  • 5 Fukase K. Hase S. Ikenaka T. Kusumoto S. Bull. Chem. Soc. Jpn.  1992,  65:  436 
  • 6 Ustyuzhanina N. Komarova B. Zlotina N. Krylov V. Gerbst A. Tsvetkov Y. Nifantiev N. Synlett  2006,  921 
  • 7 Gerbst AG. Ustuzhanina NE. Grachev AA. Tsvetkov DE. Khatuntseva EA. Whitefield DM. Berces A. Nifantiev NE. J. Carbohydr. Chem.  2001,  20:  821 
  • 8 Ustyuzhanina N. Krylov V. Grachev A. Gerbst A. Nifantiev N. Synthesis  2006,  4017 
  • 9 Jenkins D. Potter B. J. Chem. Soc., Perkin Trans. 1  1998,  41 
  • 10 Ogawa T. Yamamoto H. Carbohydr. Res.  1985,  137:  79 
  • 11 Schmidt RR. Kinzy W. Adv. Carbohydr. Chem. Biochem.  1994,  50:  21 
  • 12 Duus JØ. Nifantiev N. Shashkov AS. Khatunseva EA. Bock K. Carbohydr. Res.  1996,  288:  25 
  • 13 Spijker NM. van Boeckel CAA. Angew. Chem., Int. Ed. Engl.  1991,  30:  180 ; Angew. Chem. 1991, 103, 179
  • 14 Lars P. Kund J. J. Org. Chem.  2001,  66:  6268 
  • 15 Sushovie B. Vajtuer Z. Naumshi R. Tetrahedron  1991,  47:  8407 
  • 16 Armarego WLF. Chai CLL. Purification of Laboratory Chemicals   5th ed.:  Butterworth Heinemann; Burlington, MA: 2003.