Synlett 2008(11): 1603-1617  
DOI: 10.1055/s-2008-1077882
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Esterification of Carboxylic Acids and Etherification of Phenols with Amide Acetals

Helmut Vorbrüggen*
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
e-Mail: helvor@chemie.fu-berlin.de;
Further Information

Publication History

Received 19 February 2008
Publication Date:
20 June 2008 (online)

Abstract

The esterification and etherification of unhindered, as well as severely hindered, carboxylic acids and phenols with basic amide acetals, such as N,N-dimethylformamide dimethyl acetal, and their side reactions are discussed. Modified procedures are described in which these side reactions are avoided to achieve high or near quantitative yields of the desired corresponding methyl esters or phenol methyl ethers. On the addition of N,N-dimethylform­amide dimethyl acetal, solutions of 4-nitrobenzoic acid in basic solvents, such as tetrahydrofuran or 1,4-dioxane, form precipitates of the corresponding iminium carboxylates, which give near quantitative yields of the desired methyl 4-nitrobenzoate, as well as N,N-dimethylformamide and methanol.

1 Introduction

2 Preparation and Properties of Amide Acetals

3 Esterification of Carboxylic Acids and Etherification of Phenols with Amide Acetals

4 Side Reactions during the Esterifications and Etherifications

4.1 Suppression of the Formation of Quaternary Salts and Other Side Reactions

4.2 Tetrahydrofuran or 1,4-Dioxane as Optimal Reaction Solvents

4.3 Attempted Suppression of Condensation Reactions

5 Concluding Remarks

    References

  • 1a Otera J. Chem. Rev.  1993,  93:  1449 
  • 1b Otera J. Angew. Chem. Int. Ed.  2001,  40:  2044 
  • 2 Otera J. Esterification   Wiley-VCH; Weinheim: 2003. 
  • 3 Ishihara K. Ohara S. Yamamoto H. Science  2000,  290:  1140 
  • 4 Wakasugi K. Misaki T. Yamada K. Tanabe Y. Tetrahedron Lett.  2000,  41:  5249 
  • 5 Goossen LS. Paetzold J. Angew. Chem. Int. Ed.  2002,  41:  1237 
  • 6 Xiang J. Orita A. Otera J. Angew. Chem. Int. Ed.  2002,  41:  4117 
  • 7 Trujillo JI. Gopalan AS. Tetrahedron Lett.  1993,  34:  7355 
  • 8 Lee JC. Song I.-G. Park JY. Synth. Commun.  2002,  32:  2209 
  • 9 Neises B. Steglich W. Angew. Chem. Int. Ed. Engl.  1978,  17:  522 
  • 10 Höfle G. Steglich W. Vorbrüggen H. Angew. Chem. Int. Ed. Engl.  1978,  17:  569 
  • 11 Seyferth D. Menzel H. Dow AW. Flood TC.
    J. Organomet. Chem.  1972,  44:  279 
  • 12 Podlech J. J. Prakt. Chem.  1998,  340:  679 
  • 13 Eistert B. Regitz M. Heck G. Schwall H. In Houben-Weyl   4th ed., Vol. X/4:  Müller E. Thieme; Stuttgart: 1968.  p.473-893  
  • 14 Meerwein H. Florian W. Schön N. Stopp G. Justus Liebigs Ann. Chem.  1961,  641:  1 
  • 15 Bredereck H. Effenberger F. Simchen G. Chem. Ber.  1963,  96:  1350 
  • 16 Bredereck H. Simchen G. Rebsdat S. Kantlehner W. Horn P. Wahl R. Hoffmann H. Grieshaber P. Chem. Ber.  1968,  101:  41 
  • 17 Arnold Z. Kornilov M. Collect. Czech. Chem. Commun.  1964,  29:  645 
  • 18 Mohacsi E. Synth. Commun.  1983,  13:  723 
  • 19 Baldwin JE. Rudolph M. Tetrahedron Lett.  1994,  35:  6163 
  • 20 Winberg HE. inventors; US  3239519.  ; Chem. Abstr. 1966, 64, 15854
  • 21 Theisen P. McCollum C. Andrus A. Nucleosides Nucleotides  1993,  12:  1033 
  • 22 Bredereck H. Effenberger F. Botsch H. Chem. Ber.  1964,  97:  3397 
  • 23 Simchen G. Hoffmann H. Bredereck H. Chem. Ber.  1968,  101:  51 
  • 24 Bredereck H. Simchen G. Wahl R. Chem. Ber.  1968,  101:  4048 
  • 25 Bredereck H. Simchen G. Funke B. Chem. Ber.  1971,  104:  2709 
  • 26 Bredereck H. Simchen G. Horn P. Chem. Ber.  1970,  103:  210 
  • 27 inventors; JP  55118452.  ; Chem. Abstr. ???, 95, 6861
  • 28 Zemlicka J. Collect. Czech. Chem. Commun.  1963,  28:  1060 
  • 29 Zemlicka J. Collect. Czech. Chem. Commun.  1970,  35:  3575 
  • 30 Wrobel J. Millen J. Sredy J. Dietrich A. Kelly JM.
    J. Med. Chem.  1989,  32:  2493 
  • 31 Anelli PL. Brocchetta M. Palano D. Visigalli M. Tetrahedron Lett.  1997,  38:  2367 
  • 32 Holtwick JB. Golankiewicz B. Holmes BN. Leonard NJ. J. Org. Chem.  1979,  44:  3835 
  • 33 Helfer DL. Hosmane RS. Leonard NL. J. Org. Chem.  1981,  46:  4803 
  • 34 Hosmane RS. Leonard NJ. Synthesis  1981,  118 
  • 35 Gloede J. Haase L. Groß H. Z. Chem.  1969,  201 
  • 36 Granik VG. Zhidkova AM. Glushkov RG. Russ. Chem. Rev. (Engl. Transl.)  1977,  46:  361 
  • 37 Abdullah RF. Brinkmeyer RS. Tetrahedron  1979,  35:  1675 
  • 38 Brechbühler H. Büchi H. Hatz E. Schreiber J. Eschenmoser A. Angew. Chem. Int. Ed. Engl.  1963,  2:  212 ; Angew. Chem. 1963, 75, 296
  • 39 Vorbrüggen H. Angew. Chem.  1963,  75:  296 
  • 40 Brechbühler H. Büchi H. Hatz E. Schreiber J. Eschenmoser A. Helv. Chim. Acta  1965,  48:  1746 
  • 41a Vorbrüggen H. Justus Liebigs Ann. Chem.  1974,  821 
  • 41b

    While at Stanford in 1962 as a postdoc with C. Djerassi, I read with great interest the seminal publication of H. Meerwein et al. (see ref. 14) on the syntheses and reactions of new amide acetals and I was intrigued by the observation that on addition of water to cyclic DMF ethylene acetal 7g, heat was evolved. To test whether 7g might be an interesting new reagent for mild selective ketalizations of carbonyl groups, I prepared DMF diethyl acetal 7b and converted it with ethylene glycol into DMF ethylene acetal 7g. Yet, cholestan-3-one only reacted with 7g in boiling CH2Cl2 after adding acetic acid as a catalyst, whereupon the desired crystalline cholestan-3-one ethylene ketal was obtained in 83% yield, see: Vorbrüggen, H. Steroids 1963, 1, 45. On chromatography of the crude reaction mixture using deactivated alumina, the O-monoacetate of ethylene glycol was isolated alongside the desired ethylene ketal. Because amide acetals, such as 7g, seemed to transform carboxylic acids into their corresponding esters, I reacted compounds such as benzoic and nicotinic acid, as well as phenol and 2,4,6-trichlorophenol, with diethyl acetal 7b and dibenzyl acetal 7c and, indeed, obtained the corresponding esters and phenyl ethers. While wondering about the possible scope of these new esterifications, I contacted Dr. John G. Moffatt at the neighboring Syntex Laboratories in Palo Alto and asked him whether he might be interested in trying to synthesize esters from nucleotides using diethyl acetal 7b. A few days later, John called and told me that a new postdoc of his, who had just completed his Ph.D. with A. Eschenmoser at ETH in Zürich, had informed him that A. Eschenmoser was also working on the esterifications of carboxylic acids with amide acetals. When I discussed this work with C. Djerassi, who had generously supported my little additional research project, he only commented, ‘Write him!’. This I did although with some trepidation as a completely unknown scientist, but I received an immediate reply in which A. Eschenmoser suggested that we should publish our results in two adjacent communications in Angewandte Chemie (see refs. 38 and 39). I later met A. Eschenmoser on a number of occasions and exchanged information with him on various aspects of the field of nucleic acids. I learnt to admire A. Eschenmoser not only for his intellectual brilliance, but also, in particular, as a scientist and colleague, who has always been absolutely fair to other scientists in his publications and lectures by giving credit to whom ever credit was due, which unfortunately is not as common nowadays.

  • 42 Holy A. Bald RW. Hong NgD. Collect. Czech. Chem. Commun.  1971,  36:  2658 
  • 43 Feinauer R. Angew. Chem. Int. Ed. Engl.  1967,  6:  178 
  • 44 Thenot JP. Horning EC. Anal. Lett.  1972,  5:  519 
  • 45 Fitt JJ. Geschwend HW. J. Org. Chem.  1977,  42:  2639 
  • 46 Taylor EC. Macor JE. J. Heterocycl. Chem.  1985,  22:  409 
  • 47 Gupton JT. Miller JF. Bryant RD. Maloney PR. Foster BS. Tetrahedron  1987,  43:  1747 
  • 48 Smodis J. Zupet R. Petric A. Stanovnik B. Tisler M. Heterocycles  1990,  30:  393 
  • 49 Stanovnik B. Svete J. Tisler M. Zorz L. Hvala A. Simonic I. Heterocycles  1988,  27:  903 
  • 50 O’Donnell MJ. Bruder WA. Daugherty BW. Liu D. Wojciechowski K. Tetrahedron Lett.  1984,  25:  3651 
  • 51 Grubb MF. Callery PS. J. Chromatogr.  1989,  469:  191 ; Chem. Abstr. 1989, 111, 208476
  • 52 Böttcher H. Gericke R. Liebigs Ann. Chem.  1988,  749 
  • 53 Clark RD. Repke DB. Heterocycles  1984,  22:  195 
  • 54 Widmer U. Synthesis  1983,  135 
  • 55 Mohacsi E. Leimgruber W. Baruth H. J. Med. Chem.  1982,  25:  1264 
  • 56 Mohacsi E. Synth. Commun.  1983,  3:  827 
  • 57 Xie J. Soleilhac J.-M. Schmidt C. Peyroux J. Roques BP. Fournie-Zaluski M.-C. J. Med. Chem.  1989,  32:  1497 
  • 58 Tilley JW. Sarabu R. Wagner R. Mulkerins K. J. Org. Chem.  1990,  55:  906 
  • 59 Nakane M. Reid JA. Han W.-C. Das J. Truc VC. Haslanger MF. Garber D. Harris DN. Hedberg A. Ogletree ML. Hall SE. J. Med. Chem.  1990,  33:  2465 
  • 60 Watson NS. Bell R. Chan C. Cox B. Hutson JL. Keeling SE. Kirk BE. Procopiou PA. Steeples IP. Widdowson J. Bioorg. Med. Chem.  1993,  3:  2541 
  • 61 Lester MG. Giblin GMP. Inglis GGA. Procopiou PA. Ross BC. Watson NS. Tetrahedron Lett.  1993,  34:  4357 
  • 62 Hamprecht D. Josten J. Steglich W. Tetrahedron  1996,  52:  10883 
  • 63 Unangst P. Connor DT. Miller SR. J. Heterocycl. Chem.  1996,  33:  1627 
  • 64 Tagat JR. McCombie SW. Nazareno DV. Boyle CD. Koslowsk i JA. Chackalamannil S. Josien H. Wang Y. Zhou G. J. Org. Chem.  2002,  67:  1171 
  • 65 Choong IC. Lew W. Lee D. Pham P. Burdett MT. Lam JW. Wiesmann C. Luong TN. Fahr B. DeLano WL. McDowell RS. Allen DA. Erlanson DA. Gordon EM. O’Brian T. J. Med. Chem.  2002,  45:  5005 
  • 66 Venkatraman S. Njoroge FG. Girijavallabhan V. McPhail AT. J. Org. Chem.  2002,  67:  2686 
  • 67 Ludwig J. Lehr M. Synth. Commun.  2004,  34:  3691 
  • 68 Pieraccioli D. inventors; EP  0370974.  ; Chem. Abstr. 1990, 113, 191168
  • 69 Armstrong A. Brackenridge I. Jackson RFW. Kirk JA. Tetrahedron Lett.  1988,  29:  2483 
  • 70 Nakajima N. Horita K. Abe R. Yonemitsu O. Tetrahedron Lett.  1988,  29:  4139 
  • 71 Tomooka K. Kikuchi M. Igawa K. Suzuki M. Keong P.-H. Nakai T. Angew. Chem. Int. Ed.  2000,  39:  4502 
  • 72 Mathias LJ. Synthesis  1979,  561 
  • 73 Eliel EL. In Steric Effects in Organic Chemistry   Newman MS. John Wiley; New York: 1956.  p.76-77  
  • 74 Lythgoe B. Moran TA. Nambudiry MEN. Ruston S. Tideswell J. Wright PW. Tetrahedron Lett.  1975,  16:  3863 
  • 75 Vorbrüggen H. Krolikiewicz K. Angew. Chem. Int. Ed. Engl.  1977,  16:  876 
  • 76 Asaoka M. Yanagida N. Takei H. Tetrahedron Lett.  1980,  21:  4611 
  • 77 Shishido K. Tanaka K. Fukumoto K. Kametani T. Tetrahedron Lett.  1983,  24:  2783 
  • 78 Kuroda C. Nakamura T. Hirota H. Enomoto K. Takahashi T. Bull. Chem. Soc. Jpn.  1985,  58:  146 
  • 79 Shishido K. Tanaka K. Fukumoto K. Kametani T. Chem. Pharm. Bull.  1983,  33:  532 
  • 80 Villemin D. Synthesis  1987,  154 
  • 81 Kuroda C. Shimizu S. Satoh JY. J. Chem. Soc., Chem. Commun.  1987,  286 
  • 82 Kuroda C. Shimizu S. Satoh JY. J. Chem. Soc., Perkin Trans. 1  1990,  519 
  • 83 Friederich D. Paquette LA. J. Org. Chem.  1991,  56:  3831 
  • 84 Nishitani K. Konomi T. Okada K. Yamakawa K. Heterocycles  1994,  37:  679 
  • 85 Rüttimann A. Wick A. Eschenmoser A. Helv. Chim. Acta  1975,  58:  1450 
  • 86 Vogel E. Caravatti GM. Franck P. Aristoff P. Moody C. Becker A.-M. Felix D. Eschenmoser A. Chem. Lett.  1987,  219 
  • 87 Mulzer J. Kühl U. Brüntrup G. Tetrahedron Lett.  1978,  19:  2953 
  • 88 Mulzer J. Brüntrup G. Chem. Ber.  1982,  115:  2057 
  • 89 Hara S. Taguchi H. Yamamoto H. Nozaki H. Tetrahedron Lett.  1975,  16:  1545 
  • 90 Koreeda M. Luengo JI. J. Org. Chem.  1984,  49:  2079 
  • 92 Fahrenholtz KE. Lurie M. Kierstaead RW. J. Am. Chem. Soc.  1967,  89:  5934 
  • 93 Thenot J.-P. Horning EC. Stafford M. Horning MG. Anal. Lett.  1972,  5:  217 
  • 94 Cohen HL. J. Polym. Sci., Polym. Chem. Ed.  1976,  14:  7 
  • 95 Falkowski L, Stefanska B, Bylek E, Golik J, Zielinski J, and Boroski E. inventors; PL  120035.  ; Chem. Abstr. 1984, 101, 38277
  • 96 Midgley G. Thomas CB. J. Chem. Soc., Perkin Trans. 2  1984,  1537 
  • 97 Hoberg H. Minato M. J. Organomet. Chem.  1991,  406:  C25 
  • 98 Wong PL. Moeller KD. J. Am. Chem. Soc.  1993,  115:  11434 
  • 99 Joniak K. Chem. Pap.  1995,  49:  198 
  • 100 Jones BCNM. Drach JC. Corbett TH. Kessel D. Zemlicka J. J. Org. Chem.  1995,  60:  6277 
  • 101 Mcguire JM. Powis PJ. J. Chromatogr. Sci.  1998,  36:  104 
  • 102 Sutton PW. Bradley A. Elsegood MRJ. Farras J. Jackson RFW. Romea P. Urpi F. Vilarrasa J. Tetrahedron Lett.  1999,  40:  2629 
  • 103 Hirsch JA. Schwartzkopf G. Synth. Commun.  1974,  4:  215 
  • 104 Becker AM. Irvine RW. McCormick AS. Russel RA. Warrener RN. Tetrahedron Lett.  1986,  27:  3431 
  • 105 Conley RA. inventors; EP  0216469.  ; Chem. Abstr. 1987, 107, 115366
  • 106 Ali MS. Hanson JR. Ahmad VU. Z. Naturforsch., B  1997,  52:  1237 
  • 107 Bjoerkman S. J. Chromatogr.  1982,  237:  389 
  • 108 Gloede J. J. Prakt. Chem.  1970,  312:  712 
  • 109 Gloede J. Costisella B. J. Prakt. Chem.  1971,  313:  277 
  • 111 Stork G. Brizzolara A. Landesman H. Szmuskovicz J. Terrell R. J. Am. Chem. Soc.  1963,  85:  207 
  • 112 Stamhuis EJ. Maas W. J. Org. Chem.  1965,  30:  2156 
  • 113 Huisgen R. Feiler LA. Otto P. Tetrahedron Lett.  1968,  9:  4485 
  • 114 Effenberger F. Fischer P. Schoeller WW. Stohrer WD. Tetrahedron  1978,  34:  2409 
  • 116 Lau CM. Boyer JH. J. Chem. Res., Synop.  1990,  34 
  • 117 Shvo Y. Shanan-Atidi H. J. Am. Chem. Soc.  1969,  91:  6689 
  • 118 Wawer I. Osek J. J. Chem. Soc., Perkin Trans. 2  1985,  1669 
91

3β-(4-Nitrophenoxy)-5α-androstan-17-one (82)
To a boiling solution of 3α-hydroxy-5α-androstan-17-one (80) (0.249 g, 1 mmol) in abs benzene (15 mL) was added a third of a suspension of DMF dineopentyl acetal 7d (4.3 mL, 15 mmol) and 4-nitrophenol (81) (2.087 g, 15 mmol) in abs benzene (15 mL). After heating at 80 °C for 24 h, the rest of the suspension was added in small portions over a period of 48 h. The mixture was heated at 80 °C for a further 14 h and then was cooled. Ice (20 g) was added to the mixture, which was then extracted with 2 M NaOH (2 × 35 mL). The extracts were dried (MgSO4) and benzene was evaporated off to give the crude crystalline product (1.618 g), which on recrystallization (MeOH) gave slightly impure 3β-(4-nitrophenoxy)-5α-androstan-17-one (82) (0.188 g). Filtration of the product in CH2Cl2 over a small column of neutral alumina (7.5 g, activity II) and recrystallization of the eluate (MeOH) gave pure 82; mp 214 °C; [α]D +62.9 (c 1, CHCl3). The combined mother liquors were column chromatographed [silica gel (70 g), cyclohexane]. Elution [cyclohexane-toluene, 2:3 (200 mL), then 3:7 (400 mL)] afforded homogeneous 5α-androst-2-en-17-one, which was recrystallized (pentane) to give the pure side product. Yield: 0.056 g (24%); mp 106.5-107 °C. Further elution (toluene, 1 L) gave additional pure 82 (0.051 g). Combined yield: 0.239 g (68%).

110

Methyl 4-Nitrobenzoate (88)
Using 7a and DCE: To a suspension of 4-nitrobenzoic acid (87) (3.342 g, 20 mmol) in DCE (25 mL) was added a solution of DMF dimethyl acetal 7a (8.2 mL, 62 mmol) in DCE (25 mL) over a period of 5 h at 24 °C with stirring. Stirring was continued for a further 66 h, whereupon a clear yellowish solution resulted. After evaporation at 35 °C/0.5 Torr, the crystalline residue was extracted with boiling Et2O (3 × 70 mL) resulting in, after further evaporation, crude methyl 4-nitrobenzoate (88). Yield: 3.265 g (90%); mp 92-94 °C. Recrystallization from boiling hexane resulted in pure 88; mp 95-96 °C (Lit. mp 96 °C; see also ref. 108). The crystalline yellowish residue (0.480 g) that remained after the extraction with Et2O was recrystallized (abs EtOH, 5 mL) to give acidic tetramethylammonium salt 89 (0.063 g); mp 278-281 °C. On acidification of the mother liquor with 1 M H2SO4 and extraction with CH2Cl2, pure 4-nitrobenzoic acid (87) was recovered; mp 242 °C (see also ref. 20).
Using 13a and DCE: To a suspension of 4-nitrobenzoic acid (87) (2.507 g, 15 mmol) in DCE (40 mL) was added N,N-tetramethylene-formamide dimethyl acetal 13a (4.656 mL, 30 mmol) with stirring at 30 °C. After 4 h at 30 °C, the mixture was stirred with sat. NaHCO3 soln (20 mL) and then was extracted with Et2O (3 × 20 mL). After evaporation of the ethereal extract, pure, homogeneous, crystalline methyl 4-nitrobenzoate (88) was obtained. Yield: 2.496 g (92%). The repetition of this experiment over a period of 25 h at 30 °C and workup with NaHCO3 gave crystalline 88; Yield: 2.712 g (100%) (see also ref. 20)
Using 7a and THF: To a stirred boiling solution of 4-nitro-benzoic acid (87) (0.84 g, 5 mmol) in abs THF (30 mL) in a 100-mL three-necked round-bottom flask, connected to a reflux condenser and an addition funnel and in an oil bath at 80 °C, was added dropwise a solution of DMF dimethyl acetal 7a (1.8 mL, 15 mmol) in abs THF (20 mL), where-upon a colorless precipitate formed. After the addition of about 10 mL (7.5 mmol) of the THF solution of 7a, a clear yellowish solution resulted, indicating the completion of the reaction. Evaporation of the mixture afforded the crude crystalline product (1.33 g), which was dissolved in tert-butyl methyl ether (20 mL) and filtered over a layer of silica gel (18 g) to give crystalline methyl 4-nitrobenzoate (88). Yield: 0.94 g (100%); mp 94-96 °C. Recrystallization (boiling hexane, 40 mL) resulted in the first crop of pure 88 (0.69 g); mp 96 °C. Concentration of the mother liquor afforded another crop of pure 88 (0.16 g). Combined yield: 0.85 g (90%). The remaining hexane mother liquor still contained, according to TLC (hexane-EtOAc, 4:1), methyl 4-nitrobenzoate (88).

115

Dimethyl Fumarate (94) To a stirred boiling solution of fumaric acid (92) (1.16 g, 10 mmol) in abs THF (30 mL) in a 100-mL three-necked round-bottom flask, connected to a reflux condenser and an addition funnel and in an oil bath at 80 °C, was added dropwise a solution of DMF dimethyl acetal 7a (4 mL, 30 mmol) in abs THF (20 mL) over a period of 1 h, whereupon salt 93 formed as a colorless precipitate. Because the solution was still somewhat turbid, additional 7a (1.3 mL, 10 mmol) in abs THF (10 mL) was added over a period of 0.5 h, and the mixture was heated for another 0.5 h and stirred overnight at r.t. for 16 h. The resulting yellowish solution was decanted from a small amount of colorless precipitate (0.03 g), which was washed with tert-butyl methyl ether and the extracts were filtered. On evaporation, the filtrate gave a crude yellowish crystalline substance (1.63 g) that was dissolved in tert-butyl methyl ether (125 mL) and filtered over a layer of silica gel (16 g). The slightly yellowish solution gave, on evaporation, spontaneously crystallizing homogeneous dimethyl fumarate (94). Yield: 1.3 g (93%); mp 99-103 °C; R f = 0.35 (hexane-EtOAc, 9:1).

119

( E )- and ( Z )-3-(Dimethylamino)acrylonitrile (111) and (112) In a 100-mL three-necked round-bottom flask, connected to a reflux condenser and an addition funnel and in an oil bath at 80 °C, was stirred a solution of cyanoacetic acid (104) (1.70 g, 20 mmol) in 1,4-dioxane (30 mL, previously dried over 4 Å MS). To this solution was added DMF dimethyl acetal 7a (4 mL, 30 mmol) in 1,4-dioxane (20 mL) with vigorous stirring over a period of 1 h. Heating was continued for a further 1 h. After cooling the mixture and evaporating off the solvent, the crude dark oily product (3.16 g) was extracted with tert-butyl methyl ether and the extracts were filtered over a layer of silica gel (ca. 16 g). On evaporation of the yellow filtrate, homogeneous 3-(dimethylamino)acrylonitrile (111/112) was obtained. Yield: 1.92 g (100%); R f = 0.72 (tert-butyl methyl ether).