Synthesis 2021; 53(20): 3653-3672
DOI: 10.1055/a-1517-7329
review

Photocatalytic Homocoupling Transformations

a   Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante, 03080-Alicante, Spain
b   Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, 03080-Alicante, Spain
,
c   Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, 01330, Adana, Turkey
,
d   Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
,
b   Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, 03080-Alicante, Spain
,
b   Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, 03080-Alicante, Spain
,
a   Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante, 03080-Alicante, Spain
b   Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, 03080-Alicante, Spain
› Author Affiliations
We gratefully acknowledge financial support from the Ministerio de Economía y Competitividad (MINECO) (CTQ2016-76782-P), the Agencia Estatal de Investigación (AEI) (CTQ2016-81797-REDC), the Fondo Europeo de Desarrollo Regional (FEDER, EU) (European Regional Development Fund) (PID2019-107268GB-I00), Universidad de Alicante and Çukurova Üniversitesi.


Dedicated to the memory of Prof. Pedro Molina

Abstract

Homocoupling reactions promoted by photocatalysts are not very abundant in the literature. However, the products generated from such processes are very interesting. In this review, we highlight the most relevant reports concerning photocatalyzed dimerizations covering the literature until the middle of 2020. Reactions will be classified according to the type of starting material employed, with an emphasis being placed on the corresponding mechanism.

1 Introduction

2 Arenes and Heteroarenes

3 Alkenes

4 Alkanes

5 Alkynes

6 Aldehydes, Ketones, Alcohols, Amines and Imines

7 Carboxylic Acids

8 Nitro Compounds

9 Conclusions



Publication History

Received: 10 March 2021

Accepted after revision: 26 May 2021

Accepted Manuscript online:
26 May 2021

Article published online:
22 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 1b Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850

      For recent reviews, see:
    • 2a Gopalan-Sibi M, Verma D, Kim J. Cat. Rev. Sci. Eng. 2020; 62: 163
    • 2b Haug WK, Moscarello EM, Wolfson ER, McGrier PL. Chem. Soc. Rev. 2020; 49: 839
    • 2c Prentice C, Morrisson J, Smith AD, Zysman-Colman E. Beilstein J. Org. Chem. 2020; 16: 2363

      For recent reviews, see:
    • 3a Markushyna Y, Smith CA, Savateev A. Eur. J. Org. Chem. 2020; 1294
    • 3b Zhang T, Xing G, Chen W, Chen L. Mater. Chem. Front. 2020; 4: 332
    • 3c Wang H, Wang H, Wang Z, Tang L, Zeng G, Xu P, Chen M, Xiong T, Zhou C, Li X, Huang D, Zhu Y, Wang Z, Tang J. Chem. Soc. Rev. 2020; 49: 4135
    • 3d Cervantes-González J, Vosburg DA, Mora-Rodríguez SE, Vázquez MA, Zepeda LG, Villegas-Gómez C, Lagunas-Rivera S. ChemCatChem 2020; 12: 3811

      For recent reviews, see:
    • 4a De Abreu M, Belmont P, Brachet E. Eur. J. Org. Chem. 2020; 1327
    • 4b Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
    • 4c Garrido-Castro AF, Maestro MC, Alemán J. Catalysts 2020; 10: 562
    • 4d Zhu D.-L, Young DJ, Li H.-X. Synthesis 2020; 52: 3493

      For recent reviews, see:
    • 5a Yu X.-Y, Zhao Q.-Q, Chen J, Xiao W.-J, Chen J.-R. Acc. Chem. Res. 2020; 53: 1066
    • 5b Hockin BM, Li C, Robertson N, Zysman-Colman E. Cat. Sci. Tech. 2019; 9: 889
  • 6 Nijamudheen A, Datta A. Chem. Eur. J. 2020; 26: 1442
    • 7a Stanley PA, Spiteri C, Moore JC, Barrow AS, Sharma P, Moses JE. Curr. Pharm. Des. 2016; 22: 1628
    • 7b Wezeman T, Masters K.-S, Braese S. Angew. Chem. Int. Ed. 2014; 53: 4524
  • 8 Ueda H. Chem. Pharm. Bull. 2020; 68: 117
  • 9 Menezes JC. J. M. D. S, Diederich MF. Eur. J. Med. Chem. 2019; 182: 111637
    • 10a Ma L.-F, Chen Y.-L, Shan W.-G, Zhan Z.-J. Nat. Prod. Rep. 2020; 37: 999
    • 10b Zhao W.-Y, Yan J.-J, Liu T.-T, Gao J, Huang H.-L, Sun C.-P, Huo X.-K, Deng S, Zhang B.-J, Ma X.-C. Eur. J. Med. Chem. 2020; 203: 112622
    • 10c Harmange-Magnani CS, Thach DQ, Haelsig KT, Maimone TJ. Acc. Chem. Res. 2020; 53: 949
    • 10d Chen J, Liu B. Synlett 2018; 29: 863
  • 11 Gomes NG. M, Pereira RB, Andrade PB, Valentao P. Marine Drugs 2019; 17: 551
  • 12 Kamo S, Kuramochi K, Tsubaki K. Tetrahedron Lett. 2018; 59: 224
  • 13 Jeon S, Park J, Han S. Synlett 2017; 28: 2353
  • 14 Tykwinski RR. Acc. Chem. Res. 2019; 52: 2056
  • 15 Wang Z, Hou R, Loh IY. Nanoscale 2019; 11: 9240
  • 16 Lee CG, Park JY, Park YI, Jung S.-H, Sung LG, Park JM, Hwang D.-N, Kong H. J. Nanosci. Nanotechnol. 2019; 19: 4782
  • 17 Xiao L, Chen S, Chen X, Peng X, Cao Y, Zhu X. J. Mater. Chem. C 2018; 6: 3341
  • 18 Xiao Q, Li Y, Wu F, Han M, Xie M, Li Z, Zhu L, Li Z. J. Mater. Chem. C 2018; 6: 10547
  • 19 Brycki BE, Kowalczyk IH, Szulc AM, Brycka JA. Tenside Surf. Det. 2018; 55: 432
    • 20a Sarmales-Murga C, Akaoka F, Sato M, Takanishi J, Mino T, Miyoshi N, Watanabe K. J. Antibiot. 2020; 73: 320
    • 20b Liu F, Tian H.-Y, Huang X.-L, Wang W.-J, Li N.-P, He J, Ye W.-C, Wang L. J. Org. Chem. 2019; 84: 15355
    • 20c van Harten RM, Willems RJ. L, Martin NI, Hendrickx AP. A. Trends Microbiol. 2017; 25: 467
  • 21 He X, Wang Y, Luo R.-H, Yang L.-M, Wang L, Guo D, Yang J, Deng Y, Zheng Y.-T, Huang S.-X. J. Nat. Prod. 2019; 82: 1813
  • 22 Feizpour F, Jafarpour M, Rezaeifard A. Catal. Lett. 2019; 149: 1595
  • 23 Guo J, Xu Y.-W, Li K, Xiao L.-M, Chen S, Wu K, Chen X.-D, Fan Y.-Z, Liu JM, Su C.-Y. Angew. Chem. Int. Ed. 2017; 56: 3852
  • 24 Tran H, McCallum T, Morin M, Barriault L. Org. Lett. 2016; 18: 4308
  • 25 Masuda Y, Ishida N, Murakami M. Eur. J. Org. Chem. 2016; 5822
  • 26 Kunkely H, Vogler A. Inorg. Chim. Acta 2000; 300–302: 1090
  • 27 Liu C, Fei Y.-y, Zhang H.-l, Pan C.-y, Hong C.-y. Macromolecules 2019; 52: 176
    • 28a Hayashi T, Maeda K. Bull. Chem. Soc. Jpn. 1960; 33: 565
    • 28b Hayashi T, Maeda K. Bull. Chem. Soc. Jpn. 1962; 35: 2057
  • 29 Al-Dies A.-AM, Asiri AM, Osman OI, Khan SA. Res. J. Appl. Sci. 2018; 13: 616
    • 30a Kishimoto Y, Abe J. J. Am. Chem. Soc. 2009; 131: 4227
    • 30b Shima K, Mutoh K, Kobayashi Y, Abe J. J. Am. Chem. Soc. 2014; 136: 3796
  • 31 Iwasaki T, Kato T, Kobayashi Y, Abe J. Chem. Commun. 2014; 50: 7481
    • 32a Hatano S, Horino T, Tokita A, Oshima T, Abe J. J. Am. Chem. Soc. 2013; 135: 3164
    • 32b Yamaguchi T, Hatano S, Abe J. J. Phys. Chem. A 2014; 118: 134
  • 33 Yamamoto K, Mutoh K, Abe J. J. Phys. Chem. A 2019; 123: 1945
  • 34 Mutoh K, Arai H, Kobayashi Y, Abe J. Pure Appl. Chem. 2015; 87: 511
  • 35 Sarkar D, Bera N, Ghosh S. Eur. J. Org. Chem. 2020; 1310 ; and references cited therein
  • 36 Selig P, Bach T. J. Org. Chem. 2006; 71: 5662
  • 37 For an interesting cyclobutene core in a natural product, see: Ma Z, Wang X, Wang X, Rodríguez RA, Moore CE, Gao S, Tan X, Ma Y, Rheingold AL, Baran PS, Chen C. Science 2014; 346: 219

    • For general recent [2+2] reactions in the search for new applications, novel materials and as result of secondary products, see:
    • 38a Sima J.-Y, Li H.-X, Young DJ, Braunstein P, Lang J.-P. Chem. Commun. 2019; 55: 3532
    • 38b Rath BB, Kole GK, Morris SA, Vittal JJ. Chem. Commun. 2020; 56: 6289
    • 38c Peng J, Ye K, Liu C, Sun J, Lu R. J. Mater. Chem. C 2019; 7: 5433
    • 38d Giménez RE, Serrano MP, Álvarez R, María S, Martino DM, Borsarelli CD. ChemPlusChem 2019; 84: 504
    • 38e Zhao L.-M, Lei T, Liao R.-Z, Xiao H, Chen B, Ramamurthy V, Tung C.-H, Wu L.-Z. J. Org. Chem. 2019; 84: 9257
    • 38f Zelenak V, Benova E, Almasi M, Halamova D, Hornebecq V, Hronsky V. New J. Chem. 2018; 42: 13263
    • 38g Zhou C, Lei T, Wei X.-Z, Liu Z, Chen B, Ramamurthy V, Tung C.-H, Wu L.-Z. Org. Lett. 2018; 20: 6808
    • 38h Rath BB, Kole GK, Vittal JJ. Cryst. Growth Design 2018; 18: 6221
    • 38i Quah HS, Yap J, Li X, Sambasivam U, Chanthapally A, Donnadieu B, Vittal JJ. Cryst. Growth Design 2018; 18: 3693
    • 38j Voevodin A, Campos LM, Roy X. J. Am. Chem. Soc. 2018; 140: 5607
    • 38k Garai M, Biradha K. Chem. Eur. J. 2017; 23: 273
    • 38l Gong L.-L, Feng XF, Luo F, Yi XF, Zheng AM. Green Chem. 2016; 18: 2047
    • 38m Udagawa A, Johnston P, Sakon A, Toyoshima R, Uekusa H, Koshima H, Saito K, Asahi T. RSC Adv. 2016; 6: 107317
    • 38n Kim JH, Bae JM, Lee HG, Kim NJ, Jung K.-D, Kim C, Kim S.-J, Kim Y. Inorg. Chem. Commun. 2012; 22: 1
  • 39 Wu Q.-A, Chen F, Ren C.-C, Liu X.-F, Chen H, Xu L.-X, Yu X.-C, Luo S.-P. Org. Biomol. Chem. 2020; 18: 3707
  • 40 Fedorova OA, Saifutiarova AE, Gulakova EN, Guskova EO, Aliyeu TM, Shepel NE, Fedorov YV. Photochem. Photobiol. Sci. 2019; 18: 2208
  • 41 Neena KK, Sudhakar P, Thilagar P. Angew. Chem. Int. Ed. 2018; 57: 16806
  • 42 Lei T, Zhou C, Wei XZ, Yang B, Chen B, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2019; 25: 879
    • 43a Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 43b Tyson EL, Farney EP, Yoon TP. Org. Lett. 2012; 14: 1110
  • 44 Zhao G, Yang C, Guo L, Sun H, Lin R, Xia W. J. Org. Chem. 2012; 77: 6302
  • 45 Wei D, Li Y, Liang F. Adv. Synth. Catal. 2016; 358: 3887
  • 46 Chuskit D, Chaudhary R, Venugopalan P, König B, Natarajan P. Org. Chem. Front. 2018; 5: 3553
  • 47 Zhou M, Wang F, Zhang XH, Tu H.-Y, Zhang XG. J. Fluorine Chem. 2018; 215: 10
  • 48 Das S, Lai D, Mallick A, Roy S. ChemistrySelect 2016; 4: 691
  • 49 McTiernan CD, Morin M, McCallum T, Scaiano JC, Barriault L. Catal. Sci. Technol. 2016; 6: 201
  • 50 Levin VV, Agababyan DP, Struchkova MI, Dilman AD. Synthesis 2018; 50: 2930
  • 51 Fukuzumi S, Ishikawa K, Tanaka T. Organometallics 1987; 6: 358
  • 52 Kerzig C, Wenger OS. Chem. Sci. 2019; 10: 11023
  • 53 Zhang Y, Tia S, Lee TS, Petersen JL, Milsmann C. J. Am. Chem. Soc. 2018; 140: 5934
  • 54 Zhang Y, Petersen JL, Milsmann C. Organometallics 2018; 37: 4488
  • 55 Shukla D, de Rege F, Wan P, Johnston LJ. J. Phys. Chem. 1992; 95: 10240
    • 56a Fang C.-L, Horne S, Taylor N, Rodrigo R. J. Am. Chem. Soc. 1994; 116: 9480
    • 56b Ghosh S, Chaudhuri S, Bisai A. Org. Lett. 2015; 17: 1373
  • 57 Jia W.-L, He J, Yang J.-J, Gao X.-W, Liu Q, Wu L.-Z. J. Org. Chem. 2016; 81: 7172
  • 58 Moreno-Cabrerizo C, Ortega-Martínez A, Esteruelas MA, López AM, Nájera C, Sansano JM. Eur. J. Org. Chem. 2020; 3101
  • 59 Wei D, Liang F. Org. Lett. 2016; 18: 5860
  • 60 Kapuge TK, Thalgaspitiya WR. K, Rathnayake D, He J, Kerns P, Suib SL. App. Catal. B: Environ. 2020; 268: 118386
  • 61 Wang JL, Wang C, de Krafft KE, Lin W. ACS Catal. 2012; 2: 417
  • 62 Dadwal S, Deol H, Kumar M, Bhalla V. Sci. Rep. 2019; 9: 11142
  • 63 Mitkina T, Stanglmair C, Setzer W, Gruber M, Kisch H, König B. Org. Biomol. Chem. 2012; 10: 3556
    • 64a Zeug N, Bücheler J, Kisch H. J. Am. Chem. Soc. 1985; 107: 1459
    • 64b Hetterich W, Kisch H. Chem. Ber. 1987; 121: 15
  • 65 A dehydrogenative C–C coupling using a Ru-doped ZnIn2S4 catalyst was employed in dimerizations applied for the production of biodiesel, see: Luo N, Montini T, Zhang J, Fornasiero P, Fonda E, Hou T, Nie W, Lu J, Liu J, Heggen M, Lin L, Ma C, Wang M, Fan F, Jin S, Wang F. Nat. Energy 2019; 4: 575
  • 66 Ciamician G, Silber P. Ber. Dtsch. Chem. Ges. 1900; 33: 2911
    • 67a Terra BS, Macedo FJr. ARKIVOC 2012; (i): : 134
    • 67b Chatterjee A, Joshi NN. Tetrahedron 2006; 62: 12137
  • 68 Xia Q, Dong J, Song H, Wang Q. Chem. Eur. J. 2019; 25: 2949
  • 69 Cao B, Wang X, Chang L, Liu X, Wang H, Guo J, Zhou C. New J. Chem. 2020; 44: 12613
  • 70 Yang C, Wang B, Zhang L, Yin L, Wang X. Angew. Chem. Int. Ed. 2017; 56: 6627
  • 71 Liu M, Tan L, Rashid RT, Cen Y, Cheng S, Botton G, Mi Z, Li C.-J. Chem. Sci. 2020; 11: 7864
  • 72 Li Y, Zhang ZP, Mo WJ, Rong MZ, Zhang MQ, Liu D. Polymer 2020; 192: 122299
  • 73 Qiu Z, Pham HD. M, Li J, Li C.-C, Castillo-Pazos DJ, Khaliullin RZ, Li CJ. Chem. Sci. 2019; 10: 10937
  • 74 Li N, Yan W, Zhang H, Jia S, Wang Z, Zheng J, Zhu Z. New J. Chem. 2017; 41: 2764
  • 75 Pickett JE. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 2318
  • 76 Das P, Elder T, Brennessel WW, Chmely SC. RSC Adv. 2016; 6: 88050
  • 77 Ma N, Shi W, Zhang R, Zhu Z, Jiang Z. Tetrahedron Lett. 2011; 52: 718
  • 78 Singh R, Garg PK, Hundal MS, Ishar MP. S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2006; 45: 506
    • 79a Gualandi A, Nenov A, Marchini M, Rodeghiero G, Conti I, Paltanin E, Balletti M, Ceroni P, Garavelli M, Cozzi PG. ChemCatChem 2021; 13: 981
    • 79b Gualandi A, Rodeghiero G, Della Rocca E, Bertoni F, Marchini M, Perciaccante R, Jansen TP, Ceroni P, Cozzi PG. Chem. Commun. 2018; 54: 10044
  • 80 Noto N, Hyodo Y, Yoshizawa M, Koike T, Akita M. ACS Catal. 2020; 10: 14283
  • 81 Naumann R, Goez M. Green Chem. 2019; 21: 4470
  • 82 Steiner A, Williams JD, Rincon JA, de Frutos O, Mateos C, Kappe O. Eur. J. Org. Chem. 2019; 5807
  • 83 Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 8828
  • 84 Griesbeck AG, Reckenthäler M. Beilstein J. Org. Chem. 2014; 10: 1143
    • 85a Zhang M, Rouch WD, McCulla RD. Eur. J. Org. Chem. 2012; 6187
    • 85b Rouch WD, Zhang M, McCulla RD. Tetrahedron Lett. 2012; 53: 4942
  • 86 Caron A, Morin E, Collins SK. ACS Catal. 2019; 9: 9458
  • 87 Okamoto S, Kojiyama K, Tsujioka H, Sudo A. Chem. Commun. 2016; 52: 11339
  • 88 Monos TM, Magallanes G, Sebren LJ, Stephenson CR. J. J. Photochem. Photobiol., A 2016; 328: 240
  • 89 Rong J, Seeberger PH, Gilmore K. Org. Lett. 2018; 20: 4081
  • 90 Zhu J, Yuan Y, Wang S, Yao Z.-J. ACS Omega 2017; 2: 4665
  • 91 Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
  • 92 Wang C.-M, Xia P.-J, Xiao J.-A, Li J, Xiang H.-Y, Chen X.-Q, Yang H. J. Org. Chem. 2017; 82: 3895
  • 93 Koike T, Yasu Y, Akita M. Chem. Lett. 2012; 41: 999
  • 94 Shang Z.-P, Zha G.-F, Chen X.-Q, Qin H.-L. Tetrahedron Lett. 2016; 57: 4680
  • 95 Manley DW, Walton JC. Org. Lett. 2014; 16: 5394
  • 96 Gan XY, Keller EL, Warkentin CL, Crawford SE, Frontiera RR, Millstone JL. Nano Lett. 2019; 19: 2384