Synthesis 2023; 55(01): 45-61
DOI: 10.1055/a-1931-0749
short review

Carbon Materials as Catalytic Tools for Oxidative Dehydrogenations and Couplings in Liquid Phase

Anna Lenarda
a   Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Helsinki, Finland
,
Tom Wirtanen
b   VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 Espoo, Finland
,
Juho Helaja
a   Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Helsinki, Finland
› Author Affiliations
We are grateful for financial support from the Academy of Finland (J.H.) (Project no. 129062) and ‘BioCat’ project funding from Jane ja Aatos Erkon Säätiö (Jane and Aatos Erkko Foundation) (J.H.).


Abstract

Carbocatalysis is a heterogeneous metal-free catalytic technique of high potential for current and future synthetic processes. Carbocatalysts entail heterogeneous materials based on sp2/sp3 interconnected carbons decorated with oxygen functional groups, defects, and other heteroatom dopants. In this short review, we cover a wide range of different carbocatalyzed oxidative dehydrogenation reactions, with particular emphasis on liquid-phase transformations that are relevant for synthetic organic chemists.

1 Introduction

2 Structures of Catalytic Carbon Materials

3 Oxidative Aromatizations with Activated Carbon

4 Oxidative Dehydrogenation CH–CH Couplings

5 Oxidative Dehydrogenation Coupling of Benzyl Amines

6 Oxidations of Alcohols

7 Other Oxidative Transformations by Heteroatom-Doped Carbon Materials

8 Asphaltene Oxide

9 Conclusions and Outlook



Publication History

Received: 05 July 2022

Accepted after revision: 25 August 2022

Accepted Manuscript online:
25 August 2022

Article published online:
23 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bredig G, Fiske W. Beiträge Zur Chemischen Physiologie Und Pathologie. Springer; Berlin: 1912
  • 2 List B. J. Am. Chem. Soc. 2000; 122: 9336
  • 3 Rideal EK, Wright WM. J. Chem. Soc., Trans. 1925; 127: 1347
    • 4a Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
    • 4b Abednatanzi S, Gohari Derakhshandeh P, Leus K, Vrielinck H, Callens F, Schmidt J, Savateev A, van der Voort P. Sci. Adv. 2020; 6: eaaz2310
    • 4c Primo A, Neatu F, Florea M, Parvulescu V, Garcia H. Nat. Commun. 2014; 5: 5291
  • 5 Wirtanen T, Mäkelä MK, Sarfraz J, Ihalainen P, Hietala S, Melchionna M, Helaja J. Adv. Synth. Catal. 2015; 357: 3718
  • 6 Casadio DS, Aikonen S, Lenarda A, Nieger M, Hu T, Taubert S, Sundholm D, Muuronen M, Wirtanen T, Helaja J. Chem. Eur. J. 2021; 27: 5283
  • 7 Acocella MR, Mauro M, Falivene L, Cavallo L, Guerra G. ACS Catal. 2014; 4: 492
    • 8a Su DS, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlögl R. ChemSusChem 2010; 3: 169
    • 8b Tang P, Hu G, Li M, Ma D. ACS Catal. 2016; 6: 6948
    • 8c Ahmad MS, Nishina Y. Nanoscale 2020; 12: 12210
    • 8d Wu S, Yu L, Wen G, Xie Z, Lin Y. J. Energy Chem. 2021; 58: 318
  • 9 Qi W, Su D. ACS Catal. 2014; 4: 3212
  • 10 Duan X, Sun H, Wang S. Acc. Chem. Res. 2018; 51: 678
  • 11 Li X.-F, Lian K.-Y, Liu L, Wu Y, Qiu Q, Jiang J, Deng M, Luo Y. Sci. Rep. 2016; 6: 23495
    • 12a Su DS, Wen G, Wu S, Peng F, Schlögl R. Angew. Chem. Int. Ed. 2017; 56: 936
    • 12b Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Rev. 2014; 114: 6179
  • 13 Gong Y, Wei Z, Wang J, Zhang P, Li H, Wang Y. Sci Rep. 2014; 4: 6349
    • 14a Boehm H.-P, Diehl E, Heck W, Sappok R. Angew. Chem. Int. Ed. 1964; 3: 669
    • 14b Boehm HP. Chemical Identification of Surface Groups . In Advances in Catalysis, Vol. 16. Eley DD, Pines H, Weisz PB. Academic Press; New York: 1966: 179-274
  • 15 Figueiredo JL, Pereira MF. R. Catal. Today 2010; 150: 2
  • 16 Wirtanen T, Aikonen S, Muuronen M, Melchionna M, Kemell M, Davodi F, Kallio T, Hu T, Helaja J. Chem. Eur. J. 2019; 25: 12288
  • 17 Wu S, Wen G, Liu X, Zhong B, Su DS. ChemCatChem 2014; 6: 1558
    • 18a Zhang J, Wang X, Su Q, Zhi L, Thomas A, Feng X, Su DS, Schlögl R, Müllen K. J. Am. Chem. Soc. 2009; 131: 11296
    • 18b Shan W, Li S, Cai X, Zhu J, Zhou Y, Wang J. ChemCatChem 2019; 11: 1076
    • 18c Wu S, Lin Y, Zhong B, Wen G, Liu H, Su DS. Phys. Chem. Chem. Phys. 2019; 21: 1019
    • 18d Mollar-Cuni A, Ventura-Espinosa D, Martín S, García H, Mata JA. ACS Catal. 2021; 11: 14688
  • 19 Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, García H. Chem. Soc. Rev. 2017; 46: 4501
    • 20a Mestl G, Maksimova NI, Keller N, Roddatis VV, Schlögl R. Angew. Chem. Int. Ed. 2001; 40: 2066
    • 20b Schraut A, Emig G, Sockel H.-G. Appl. Catal. 1987; 29: 311
    • 20c Rodríguez-Reinoso F. Carbon 1998; 36: 159
  • 21 Su C, Acik M, Takai K, Lu J, Hao S.-j, Zheng Y, Wu P, Bao Q, Enoki T, Chabal YJ, Loh KP. Nat. Commun. 2012; 3: 1298
  • 22 Kawashita Y, Hayashi M. Molecules 2009; 14: 3073
  • 23 Hayashi M. Chem. Rec. 2008; 8: 252
  • 24 Kawashita Y, Nakamichi N, Kawabata H, Hayashi M. Org. Lett. 2003; 5: 3713
  • 25 Chang J, Zhao K, Pan S. Tetrahedron Lett. 2002; 43: 951
  • 26 Kawashita Y, Ueba C, Hayashi M. Tetrahedron Lett. 2006; 47: 4231
  • 27 Nakamichi N, Kawashita Y, Hayashi M. Synthesis 2004; 7: 1015
  • 28 Nakamichi N, Kawashita Y, Hayashi M. Org. Lett. 2002; 4: 3955
  • 29 Nakamichi N, Kawabata H, Hayashi M. J. Org. Chem. 2003; 68: 8272
  • 30 Hayashi M, Nomura Y, Kawashita Y. Heterocycles 2007; 74: 629
  • 31 Haneda S, Okui A, Ueba C, Hayashi M. Tetrahedron 2007; 63: 2414
  • 32 Hayashi M, Okunaga K.-i, Nomura Y, Kawamura K, Nakamichi N, Eda K. Heterocycles 2008; 76: 715
  • 33 Tanaka T, Okunaga K.-i, Hayashi M. Tetrahedron Lett. 2010; 51: 4633
  • 34 Hayashi M, Okunaga K.-i, Nishida S, Kawamura K, Eda K. Tetrahedron Lett. 2010; 51: 6734
  • 35 Kim S, Matsubara R, Hayashi M. J. Org. Chem. 2019; 84: 2997
  • 36 Kawashita Y, Yanagi J, Fujii T, Hayashi M. Bull. Chem. Soc. Jpn. 2009; 82: 482
  • 37 Bégin D, Ulrich G, Amadou J, Su DS, Pham-Huu C, Ziessel R. J. Mol. Catal. A: Chem. 2009; 302: 119
  • 38 Jia H.-P, Dreyer DR, Bielawski CW. Tetrahedron Lett. 2011; 67: 4431
  • 39 Štefane B, Požgan F. Monatsh. Chem. 2014; 145: 1329
  • 40 Enders L, Casadio DS, Aikonen S, Lenarda A, Wirtanen T, Hu T, Hietala S, Ribeiro LS, Pereira MF. R, Helaja J. Catal. Sci. Technol. 2021; 11: 5962
    • 41a Pereira MF. R, Órfão JJ. M, Figueiredo JL. Appl. Catal., A 1999; 184: 153
    • 41b Pereira MF. R, Órfão JJ. M, Figueiredo JL. Appl. Catal., A 2001; 218: 307
    • 41c Pereira MF. R, Orfão JJ. M, Figueiredo JL. Appl. Catal., A 2000; 196: 43
  • 42 Mäkelä M, Bulatov E, Malinen K, Talvitie J, Nieger M, Melchionna M, Lenarda A, Hu T, Wirtanen T, Helaja J. Adv. Synth. Catal. 2021; 363: 3773
  • 43 Krivec M, Gazvoda M, Kranjc K, Polanc S, Kočevar M. J. Org. Chem. 2012; 77: 2857
  • 44 Yang W, Zhou Y, Sun H, Zhang L, Zhao F, Liu H. RSC Adv. 2014; 4: 15007
  • 45 Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 46 Perea-Buceta JE, Wirtanen T, Laukkanen O.-V, Mäkelä MK, Nieger M, Melchionna M, Huittinen N, Lopez-Sanchez JA, Helaja J. Angew. Chem. Int. Ed. 2013; 52: 11835
  • 47 Zhai L, Shukla R, Wadumethrige SH, Rathore R. J. Org. Chem. 2010; 75: 4748
  • 48 Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
  • 49 El-Hout SI, Zhou Y, Kano J, Uchida Y, Nishina Y. Catal. Lett. 2020; 150: 256
  • 50 Wu H, Su C, Tandiana R, Liu C, Qiu C, Bao Y, Wu J, Xu Y, Lu J, Fan D, Loh KP. Angew. Chem. Int. Ed. 2018; 57: 10848
  • 51 Wu H, Qiu C, Zhang Z, Zhang B, Zhang S, Xu Y, Zhou H, Su C, Loh KP. Adv. Synth. Catal. 2020; 362: 789
  • 52 Morioku K, Morimoto N, Takeuchi Y, Nishina Y. Sci. Rep. 2016; 6: 25824
  • 53 Shaikh M, Sahu A, Kiran Kumar A, Sahu M, Singh SK, Ranganath KV. S. Green Chem. 2017; 19: 4533
  • 54 Fang J, Peng Z, Yang Y, Wang J, Guo J, Gong H. Asian J. Org. Chem. 2018; 7: 355
  • 55 Huang H, Huang J, Liu Y.-M, He H.-Y, Cao Y, Fan K.-N. Green Chem. 2012; 14: 930
  • 56 Rangraz Y, Heravi MM. RSC Adv. 2021; 11: 23725
  • 57 Li X.-H, Antonietti M. Angew. Chem. Int. Ed. 2013; 52: 4572
  • 58 Wang H, Zheng X, Chen H, Yan K, Zhu Z, Yang S. Chem. Commun. 2014; 50: 7517
    • 59a Chen B, Wang L, Dai W, Shang S, Lv Y, Gao S. ACS Catal. 2015; 5: 2788
    • 59b Chen B, Shang S, Wang L, Zhang Y, Gao S. Chem. Commun. 2016; 52: 481
    • 59c Wang X, Li Y. J. Mater. Chem. A 2016; 4: 5247
    • 59d Chung I.-M, Gopiraman M. React. Kinet. Mech. Catal. 2017; 122: 205
    • 59e Wang D, Mejía E. ChemistrySelect 2017; 2: 3381
    • 59f Yang F, Fan X, Wang C, Yang W, Hou L, Xu X, Feng A, Dong S, Chen K, Wang Y, Li Y. Carbon 2017; 121: 443
    • 59g Yang P, Zhang J, Liu D, Liu M, Zhang H, Zhao P, Zhang C. Microporous Mesoporous Mater. 2018; 266: 198
    • 59h Ye J, Ni K, Liu J, Chen G, Ikram M, Zhu Y. ChemCatChem 2018; 10: 259
    • 59i Zhai Y, Chu M, Xie C, Huang F, Zhang C, Zhang Y, Liu H, Wang H, Gao Y. ACS Sustainable Chem. Eng. 2018; 6: 17410
    • 59j Li Y, Shang S, Wang L, Lv Y, Niu J, Gao S. Chem. Commun. 2019; 55: 12251
    • 59k Wang K, Jiang P, Yang M, Ma P, Qin J, Huang X, Ma L, Li R. Green Chem. 2019; 21: 2448
    • 59l Liu S, Chen S, Yu A, Hu Y, Yu B, Wang H, Peng P, Li F.-F. Green Chem. 2020; 22: 7839
  • 60 Zhu S, Cen Y, Yang M, Guo J, Chen C, Wang J, Fan W. Appl. Catal., B 2017; 211: 89-97
  • 61 Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ. Science 2006; 311: 362
    • 62a Yoskamtorn T, Yamazoe S, Takahata R, Nishigaki J.-i, Thivasasith A, Limtrakul J, Tsukuda T. ACS Catal. 2014; 4: 3696
    • 62b Zhang P, Gong Y, Li H, Chen Z, Wang Y. Nat. Commun. 2013; 4: 1593
  • 63 Kuang Y, Islam NM, Nabae Y, Hayakawa T, Kakimoto M.-A. Angew. Chem. Int. Ed. 2010; 49: 436
  • 64 Dreyer DR, Jia H.-P, Bielawski CW. Angew. Chem. Int. Ed. 2010; 49: 6813
  • 65 Kuang Y, Rokubuichi H, Nabae Y, Hayakawa T, Kakimoto M.-A. Adv. Synth. Catal. 2010; 352: 2635
  • 66 Aellig C, Neuenschwander U, Hermans I. ChemCatChem 2012; 4: 525
  • 67 Luo J, Peng F, Yu H, Wang H. Chem. Eng. J. 2012; 204–206: 98
  • 68 Li S, Zhang X, Huang X, Wu S, Xie Z. J. Colloid Interface Sci. 2022; 608: 2801
  • 69 Cui Y, Lee YH, Yang JW. Sci. Rep. 2017; 7: 3146
  • 70 Yang H, Cui X, Deng Y, Shi F. RSC Adv. 2014; 4: 59754
  • 71 Li J, Li M, Sun H, Ao Z, Wang S, Liu S. ACS Catal. 2020; 10: 3516
  • 72 Li J, Li F, Yang Q, Wang S, Sun H, Yang Q, Tang J, Liu S. Carbon 2021; 182: 715
  • 73 Presolski S, Pumera M. Angew. Chem. Int. Ed. 2018; 57: 16713
  • 74 Geng L, Wu S, Zou Y, Jia M, Zhang W, Yan W, Liu G. J. Colloid Interface Sci. 2014; 421: 71
  • 75 Luo J, Yu H, Wang H, Wang H, Peng F. Chem. Eng. J. 2014; 240: 434
  • 76 Luo J, Peng F, Wang H, Yu H. Catal. Commun. 2013; 39: 44
  • 77 Watanabe H, Asano S, Fujita S.-i, Yoshida H, Arai M. ACS Catal. 2015; 5: 2886
    • 78a Hu X, Fan M, Zhu Y, Zhu Q, Song Q, Dong Z. Green Chem. 2019; 21: 5274
    • 78b Xing C, Zhang Y, Gao Y, Kang Y, Zhang S. New J. Chem. 2021; 45: 13877
  • 79 Zhu S, Chen Y, Gao X, Lv Z, He Y, Wang J, Fan W. Catal. Sci. Technol. 2020; 10: 2786
  • 80 Shang S, Dai W, Wang L, Lv Y, Gao S. Chem. Commun. 2017; 53: 1048
  • 81 Shang S, Chen P.-P, Wang L, Lv Y, Li W.-X, Gao S. ACS Catal. 2018; 8: 9936
  • 82 Hua M, Song J, Huang X, Liu H, Fan H, Wang W, He Z, Liu Z, Han B. Angew. Chem. Int. Ed. 2021; 60: 21479
  • 83 Lu L, Pei X, Mei Y, Deng Y, Zhang H, Zhang L, Lei A. Chem 2018; 4: 2861
  • 85 Jung H, Bielawski CW. Commun. Chem. 2019; 2: 1233
    • 86a Zhang J, Su D, Zhang A, Wang D, Schlögl R, Hébert C. Angew. Chem. Int. Ed. 2007; 46: 7319
    • 86b Boudart M. Chem. Rev. 1995; 95: 661
    • 86c Qi W, Liu W, Guo X, Schlögl R, Su D. Angew. Chem. Int. Ed. 2015; 127: 13886
    • 86d Qi W, Liu W, Zhang B, Gu X, Guo X, Su D. Angew. Chem. Int. Ed. 2013; 52: 14224
  • 87 Marsh H, Rodriguez-Reinoso F. Activated Carbon . Elsevier; Amsterdam: 2006