Synlett
DOI: 10.1055/a-2236-5948
synpacts

Precision Alkynylation of 1,3-Bis(Boronates) by Utilizing Distinct Organometallic Reagents for Regioselective Synthesis

Ang Chen
,
Chong-Lei Ji
,
De-Wei Gao
We are grateful for financial support from NSFC (Grant No. 22101177), the Science and Technology Commission of Shanghai Municipality (Grants Nos. 21ZR1442000 and 23YF1426700), and startup funding from ShanghaiTech University.


Abstract

The selective functionalization of 1,3-bis(boronic) esters holds the potential for creating diverse molecular structures, particularly through the late-stage functionalization of the remaining C–B bond. By employing distinct organometallic reagents, we have developed a method for regiodivergent alkynylation of 1,3-bis(boronic) esters, facilitated by unique chelation patterns. Notably, this methodology effectively overcomes limitations commonly encountered in radical chemistry, which generates only monoselective downstream targets. Furthermore, the compounds synthesized through this approach can serve as significant building blocks, contributing to the construction of molecular complexity.



Publication History

Received: 11 December 2023

Accepted after revision: 29 December 2023

Accepted Manuscript online:
29 December 2023

Article published online:
26 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For some selected reviews, see:
    • 1a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 1b Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 1c Zhang C, Li Z.-L, Gu Q.-S, Liu X.-Y. Nat. Commun. 2021; 12: 475
    • 1d Zhang Z, Chen P, Liu G. Chem. Soc. Rev. 2022; 51: 1640
    • 1e Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Chem. Rev. 2022; 122: 5842
    • 1f Bellotti P, Huang H.-M, Faber T, Glorius F. Chem. Rev. 2023; 123: 4237
    • 2a Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed. Hall DG. Wiley-VCH; Weinheim: 2011
    • 2b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 2c Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 2d Brooks WL. A, Sumerlin BS. Chem. Rev. 2016; 116: 1375
    • 2e Diner C, Szabó KJ. J. Am. Chem. Soc. 2017; 139: 2
    • 2f Fyfe JW. B, Watson AJ. B. Chem. 2017; 3: 31
    • 2g Rygus JP. G, Crudden CM. J. Am. Chem. Soc. 2017; 139: 18124
    • 2h Kalita SJ, Cheng F, Huang Y.-Y. Adv. Synth. Catal. 2020; 362: 2778
    • 2i Yeung K, Mykura RC, Aggarwal VK. Nat. Synth. 2022; 1: 117
    • 3a Matteson DS. Chem. Rev. 1989; 89: 1535
    • 3b Matteson DS. J. Org. Chem. 2013; 78: 10009
    • 3c Synthesis and Application of Organoboron Compounds . Fernández E, Whiting A. Springer International; Cham: 2015
    • 3d Leonori D, Aggarwal VK. Angew. Chem. Int. Ed. 2015; 54: 1082
    • 4a Fawcett A, Nitsch D, Ali M, Bateman JM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2016; 55: 14663
    • 4b Fawcett A, Murtaza A, Gregson CH. U, Aggarwal VK. J. Am. Chem. Soc. 2019; 141: 4573
    • 5a Viso A, Fernández de la Pradilla R, Tortosa M. ACS Catal. 2022; 12: 10603
    • 5b Wang X, Wang Y, Huang W, Xia C, Wu L. ACS Catal. 2021; 11: 1
    • 6a Miller SP, Morgan JB, Nepveux FJ, Morken JP. Org. Lett. 2004; 6: 131
    • 6b Lee Y, Jang H, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 18234
    • 6c Mlynarski SN, Schuster CH, Morken JP. Nature 2014; 505: 386
    • 6d Blaisdell TP, Morken JP. J. Am. Chem. Soc. 2015; 137: 8712
    • 6e Crudden CM, Ziebenhaus C, Rygus JP. G, Ghozati K, Unsworth PJ, Nambo M, Voth S, Hutchinson M, Laberge VS, Maekawa Y, Imao D. Nat. Commun. 2016; 7: 11065
    • 6f Liu X, Sun C, Mlynarski S, Morken JP. Org. Lett. 2018; 20: 1898
    • 6g Davenport E, Fernandez E. Chem. Commun. 2018; 54: 10104
    • 6h Yan L, Morken JP. Org. Lett. 2019; 21: 3760
    • 6i Willems S, Toupalas G, Reisenbauer JC, Morandi B. Chem. Commun. 2021; 57: 3909
    • 6j Mali M, Sharma GV. M, Ghosh S, Roisnel T, Carboni B, Berrée F. J. Org. Chem. 2022; 87: 7649
    • 6k Xu N, Kong Z, Wang JZ, Lovinger GJ, Morken JP. J. Am. Chem. Soc. 2022; 144: 17815
    • 6l Zhang M, Lee PS, Allais C, Singer RA, Morken JP. J. Am. Chem. Soc. 2023; 145: 8308
    • 7a Kaiser D, Noble A, Fasano V, Aggarwal VK. J. Am. Chem. Soc. 2019; 141: 14104
    • 7b Shi D, Xia C, Liu C. CCS Chem. 2021; 3: 1718
    • 7c Wang H, Wu J, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2022; 61: e202202061
    • 7d Wang H, Han W, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2022; 61: e202207988
  • 8 For a review, see: Jiang X.-M, Liu X.-R, Chen A, Zou X.-Z, Ge J.-F, Gao D.-W. Eur. J. Org. Chem. 2022; e202101463

    • For selected examples of 1,2-boron migration through a radical mechanism:
    • 9a Batey RA, Smil DV. Angew. Chem. Int. Ed. 1999; 38: 1798
    • 9b Zhao B, Li Z, Wu Y, Wang Y, Qian J, Yuan Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 9448
    • 9c Wang D, Mück-Lichtenfeld C, Studer A. J. Am. Chem. Soc. 2020; 142: 9119
    • 9d Jana K, Bhunia A, Studer A. Chem 2020; 6: 512
    • 9e Zhang Q, Li X, Zhang W, Wang Y, Pan Y. Org. Lett. 2021; 23: 5410
    • 9f Zhang F, Liao S, Zhou L, Yang K, Wang C, Lou Y, Wang C, Song Q. Chin. J. Chem. 2022; 40: 582
    • 9g Jana K, Studer A. Org. Lett. 2022; 24: 1100
    • 9h Tao X, Ni S, Kong L, Wang Y, Pan Y. Chem. Sci. 2022; 13: 1946
    • 9i Kong D, Zhang M, Zhang Y, Yu Z, Cao H, Wu J. Nat. Commun. 2023; 14: 2525
    • 9j Guo Y, Wang X, Li C, Su J, Xu J, Song Q. Nat. Commun. 2023; 14: 5693
  • 10 Bao Z., Huang M., Xu Y., Zhang X., Wu Y.-D., Wang J.; Angew. Chem. Int. Ed.; 2023, 62, e202216356.
    • 11a Ge J.-F, Zou X.-Z, Liu X.-R, Ji C.-L, Zhu X.-Y, Gao D.-W. Angew. Chem. Int. Ed. 2023; 62: e202307447
    • 11b Jiang X.-M, Ji C.-L, Ge J.-F, Zhao J.-H, Zhu X.-Y, Gao D.-W. Angew. Chem. Int. Ed. 2024; 63: e202318441
  • 12 Chen A, Qiao Y, Gao D.-W. Angew. Chem. Int. Ed. 2023; 62: e202216356

    • For some selected reviews on 1,2-metallate shifts from B-ate complexes, see:
    • 13a Thomas SP, French RM, Jheengut V, Aggarwal VK. Chem. Rec. 2009; 9: 24
    • 13b Leonori D, Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
    • 13c Namirembe S, Morken JP. Chem. Soc. Rev. 2019; 48: 3464
    • 13d He Z, Hu Y, Xia C, Liu C. Org. Biomol. Chem. 2019; 17: 6099
    • 13e Lovinger GJ, Morken JP. Eur. J. Org. Chem. 2020; 2362
    • 13f Kischkewitz M, Friese FW, Studer A. Adv. Synth. Catal. 2020; 362: 2077
    • 13g Wang H, Jing C, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 16859
    • 13h Yang K, Song Q. Acc. Chem. Res. 2021; 54: 2298
    • 13i Zhang F, Zhou L, Yang K, Song Q. Youji Huaxue 2022; 42: 1013

      For selected examples through a 1,3-boron shift mechanism, see:
    • 14a Brown HC, Rangaishenvi MV, Jayaraman S. Organometallics 1992; 11: 1948
    • 14b Aichhorn S, Bigler R, Myers EL, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 9519
    • 14c Hu Y, Sun W, Zhang T, Xu N, Xu J, Lan Y, Liu C. Angew. Chem. Int. Ed. 2019; 58: 15813
    • 14d Sakamoto R, Odagi M, Yamanaka M, Nagasawa K. Chem. Commun. 2023; 59: 4217
    • 14e Dominguez-Molano P, Weeks R, Maza RJ, Carbó JJ, Fernández E. Angew. Chem. Int. Ed. 2023; 62: e202304791
    • 14f Hao K, Li D, Fu D, Zou P, Xie S, Lan Y, Chen Y. Angew. Chem. Int. Ed. 2024; 63: e202316481