Planta Med 2015; 81(01): 46-55
DOI: 10.1055/s-0034-1383357
Pharmacokinetic Investigations
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Isolation and Identification of Twelve Metabolites of Isocorynoxeine in Rat Urine and their Neuroprotective Activities in HT22 Cell Assay

Wen Qi
1   Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, Peopleʼs Republic of China
,
Fangfang Chen
1   Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, Peopleʼs Republic of China
,
Jiahong Sun
2   Center for Basic and Translational Stroke Research, Department of Physiology and Pharmacology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, United States
,
James W. Simpkins
2   Center for Basic and Translational Stroke Research, Department of Physiology and Pharmacology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, United States
,
Dan Yuan
1   Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, Peopleʼs Republic of China
› Author Affiliations
Further Information

Publication History

received 14 March 2014
revised 12 October 2014

accepted 17 October 2014

Publication Date:
17 December 2014 (online)

Abstract

Isocorynoxeine, one of the major alkaloids from Uncaria Hook, shows the effects of lowering blood pressure, vasodilatation, and protection against ischemia-induced neuronal damage. In this paper, the metabolism of isocorynoxeine was investigated in rats. Twelve metabolites and the parent drug were isolated by using solvent extraction and repeated chromatographic methods, and determined by spectroscopic methods including UV, MS, NMR, and CD experiments. Seven new compounds were identified as 11-hydroxyisocorynoxeine, 5-oxoisocorynoxeinic acid-22-O-β-D-glucuronide, 10-hydroxyisocorynoxeine, 17-O-demethyl-16,17-dihydro-5-oxoisocorynoxeine, 5-oxoisocorynoxeinic acid, 21-hydroxy-5-oxoisocorynoxeine, and oxireno[18, 19]-5-oxoisocorynoxeine, together with six known compounds identified as isocorynoxeine, 18,19-dehydrocorynoxinic acid, 18,19-dehydrocorynoxinic acid B, corynoxeine, isocorynoxeine-N-oxide, and corynoxeine-N-oxide. Possible metabolic pathways of isocorynoxeine are proposed. Furthermore, the activity assay for the parent drug and some of its metabolites showed that isocorynoxeine exhibited a significant neuroprotective effect against glutamate-induced HT22 cell death at the maximum concentration. However, little or weak neuroprotective activities were observed for M-3, M-6, M-7, and M-10. Our present study is important to further understand their metabolic fate and disposition in humans.

Supporting Information

 
  • References

  • 1 Qu JL, Gong TX, Ma B, Zhang L, Kano Y, Yuan D. Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method. Chem Pharm Bull 2012; 60: 23-30
  • 2 Shi JS, Liu GX, Wu Q, Huang YP, Zhang XD. Effects of rhynchophylline and isorhynchophylline on blood pressure and blood flow of organs in anesthetized dogs. Zhongguo Yao Li Xue Bao 1992; 13: 35-38
  • 3 Zhang WB, Chen CX, Sim SM, Kwan CY. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel). Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 232-238
  • 4 Kang TH, Murakami Y, Takayama H, Kitajima M, Aimi N, Watanabe H, Matsumoto K. Protective effect of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus: putative neurotransmitter receptors involved in their action. Life Sci 2004; 76: 331-343
  • 5 Sakakibara I, Terabayashi S, Kubo M, Higuchi M, Kamatsu Y, Okada M, Taki K, Kamei J. Effect on locomotion of indole alkaloids from the hooks of Uncaria plants. Phytomedicine 1999; 6: 163-168
  • 6 Li JJ, Tang JL, Hu LL, Zhou SW, Zhou JY. Effect of rhynchophylla total alkaloids on behavior and contents of monoamine neurotransmitters in brain tissues of anxiety model rats. Third Mil Med Univ 2013; 35: 237-240
  • 7 Shimada Y, Goto H, Itoh T, Sakakibara I, Kubo M, Sasaki H, Terasawa K. Evaluation of the protective effects of alkaloids isolated from the hooks and stems of Uncaria sinensis on glutamate-induced neuronal death in cultured cerebellar granule cells from rats. Pharm Pharmacol 1999; 51: 715-722
  • 8 Yuan D, Ma B, Wu CF, Yang JY, Zhang LJ, Liu SK, Wu LJ, Kano Y. Alkaloids from the leaves of Uncaria rhynchophylla and their inhibitory activity on NO production in lipopolysaccharide-activated microglia. J Nat Prod 2008; 71: 1271-1274
  • 9 Matsumoto K, Morishige R, Murakami Y, Tohda M, Takayama H, Sakakibara I, Watanabe H. Suppressive effects of isorhynchophylline on 5-HT2A receptor function in the brain: behavioural and electrophysiological studies. Eur J Pharmacol 2005; 517: 191-199
  • 10 Huang MJ, Hao JC, Wang JL, Wang W. Biotransformation of corynoxeine and isocorynoxeine in rats. J Kunming Medical University 2012; 10: 26-30
  • 11 Cai JZ, Lin CL, Hu LF, Lin GY, Wang XQ, Ma JS. Determination of isocorynoxeine in rat plasma by liquid chromatography mass spectrometry and its application. J Liq Chromatogr Relat Technol 2013; 36: 2232-2241
  • 12 Wang W, Li XM, Chen YP, Hattori M. Structural elucidation of rat biliary metabolites of corynoxeine and their quantification using LC-MSn . Biomed Chromatogr 2014; 28: 1219-1228
  • 13 Wang W, Ma CM, Hattori M. Metabolism and pharmacokinetics of rhynchophylline in rats. Biol Pharm Bull 2010; 33: 669-676
  • 14 Wang W, Ma CM, Hattori M. Metabolism of isorhynchophylline in rats detected by LC-MS. J Pharm Pharm Sci 2010; 13: 27-37
  • 15 Yu JX, Xie XL, Wu Q, Huang XN, Sun AS, Shi JS. Mass spectroscopic identification and pharmacological effect of the metabolite of isorhynehophylline. Chin Remed Clin 2005; 5: 7-10
  • 16 Yasuda T, Ohsawa K. Urinary metabolites of daidzin orally administered in rats. Biol Pharm Bull 1998; 21: 953-957
  • 17 Bursztyka J, Perdu E, Tulliez J, Debrauwer L, Delous G, Canlet C, De Sousa G, Rahmani R, Benfenati E, Cravedi JP. Comparison of genistein metabolism in rats and humans using liver microsomes and hepatocytes. Food Chem Toxicol 2008; 46: 939-948
  • 18 Trager WF, Lee CM, Phillipson JD, Haddock RE, Dwuma-Badu D, Beckett AH. Configurational analysis of rhynchophylline-type oxindole alkaloids. The absolute configuration of ciliaphylline, rhynchociline, specionoxeine, isospecionoxeine, rotundifoline and isorotundifoline. Tetrahedron 1969; 24: 523-543
  • 19 Phillipson JD, Hemingway SR. Alkaloids from Uncaria species. III. Oxindole alkaloids from Uncaria macrophylla . Phytochem 1973; 12: 2795-2798
  • 20 Lee CM, Trager WF, Beckett AH. Corynantheidine-type alkaloids-II: Absolute configuration of mitragynine, speciociliatine, mitraciliatine and speciogynine. Tetrahedron 1967; 23: 375-385
  • 21 Yasuda T, Kano Y, Saito K, Ohsawa K. Urinary and biliary metabolites of daidzin and daidzein in rats. Biol Pharm Bull 1994; 17: 1369-1374
  • 22 Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH. Metabolism studies of the Kratom alkaloids mitraciliatine and isopaynantheine, diastereomers of the main alkaloids mitragynine and paynantheine, in rat and human urine using liquid chromatography-linear ion trap-mass spectrometry. J Chromatogr B 2011; 879: 1049-1055
  • 23 Vigano V, Paracchini S, Piacenza G, Pesce E. Metabolism of vincamine in the rat. Farmaco Sci 1978; 33: 583-594
  • 24 Zhao T, Zheng SS, Zhang BF, Li YY, Bligh ASW, Wang CH, Wang ZT. Metabolic pathways of the psychotropic-carboline alkaloids, harmaline and harmine, by liquid chromatography/mass spectrometry and NMR spectroscopy. Food Chemistry 2012; 134: 1096-1105
  • 25 Corre PL, Dollo G. Biopharmaceutics and metabolism of yohimbine in humans. Eur J Pharm Sci 1999; 9: 79-84
  • 26 Ueng YF, Yu HJ, Lee CH, Peng C, Jan WC, Ho LK, Chen CF, Don MJ. Identification of the microsomal oxidation metabolites of rutaecarpine, a main active alkaloid of the medicinal herb Evodia rutaecarpa . J Chromatogr A 2005; 1076: 103-109
  • 27 Nakazawa T, Banba K, Hata K, Nihei Y, Hoshikawa A, Ohsawa K. Metabolites of hirsuteine and hirsutine, the major indole alkaloids of Uncaria rhynchophylla, in rats. Biol Pharm Bull 2006; 29: 1671-1677
  • 28 Vereczkey L, Tamás J, Czira G, Szporny L. Metabolism of vincamine in the rat in vivo and in vitro . Arzneimittelforschung 1980; 30: 1860-1865
  • 29 Wu WN, McKown LA. The in vitro metabolism of thalicarpine, an aporphine–benzyltetrahydroisoquinoline alkaloid, in the rat API-MS/MS identification of thalicarpine and metabolites. J Pharmaceut Biomed 2002; 30: 141-150
  • 30 Tyroller S, Zwickenpflug W, Thalheim C, Richter E. Acute and subacute effects of tobacco alkaloids, tobacco-specific nitrosamines and phenethyl isothiocyanate on N-nitrosonornicotine metabolism in rats. Toxicology 2005; 215: 245-253
  • 31 Zhang HG, Sun Y, Duan MY, Chen YJ, Zhong DF, Zhang HQ. Separation and identification of Aconitum alkaloids and their metabolites in human urine. Toxicon 2005; 46: 500-506
  • 32 Umehara K, Wada K, Noguchi K, Iwatsubo T, Usui T, Hidetaka K. Relationship between exposure of (−)-N-{2-[(R)-3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a “funny” if current channel inhibitor, and heart rate reduction in tachycardia-induced beagle dogs. Drug Metab Dispos 2009; 37: 1427-1433
  • 33 Miller EI, Norris HK, Rollins DE, Tiffany ST, Wilkins DG. A novel validated procedure for the determination of nicotine, eight nicotine metabolites and two minor tobacco alkaloids in human plasma or urine by solid-phase extraction coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B 2010; 878: 725-737
  • 34 Lee YP, Hsu FL, Kang JJ, Chen CK, Lee SS. Metabolism of (2S)-pterosin A: identification of the phase I and phase II metabolites in rat urine. Drug Metab Dispos 2012; 40: 1566-1574
  • 35 Zeng Y, Qiu F, Liu Y, Qu G, Yao X. Isolation and identification of phase 1 metabolites of demethoxycurcumin in rats. Drug Metab Dispos 2007; 35: 1564-1573
  • 36 Chen FF, Qi W, Sun JH, Simpkins JW, Yuan D. Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay. Fitoterapia 2014; 97: 156-163
  • 37 Eichelbaum M, Tomion T, Tybring G, Bertilsson L. Carbamazepine metabolism in man: induction and pharmacogenetic aspects. Clin Pharmacokinet 1985; 10: 80-90
  • 38 Wenkert E, Udelhofen JH, Bhattacharyya NK. 3-Hydroxymethyleneoxindole and its derivatives. J Am Chem Soc 1959; 81: 3763-3768
  • 39 Corre PL, Dollo G. Biopharmaceutics and metabolism of yohimbine in humans. Eur J Pharm Sci 1999; 9: 79-84
  • 40 Blandini F, Porter RH, Greenamyre JT. Glutamate and Parkinsonʼs disease. Mol Neurobiol 1996; 12: 73-94
  • 41 Cherubinia A, Ruggieroa C, Polidorib MC, Mecoccia P. Potential markers of oxidative stress in stroke. Free Radic Biol Med 2005; 39: 841-852
  • 42 Yi KD, Chung J, Pang P, Simpkins WJ. Role of protein phosphatases in estrogen-mediated neuroprotection. J Neurosci 2005; 25: 7191-7198
  • 43 Tan S, Wood M, Maher P. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J Neurochem 1998; 71: 95-105
  • 44 Simpkins JW, Yang SH, Liu R, Perez E, Cai ZY, Covey DF, Green PS. Estrogen-like compounds for ischemic neuroprotection. Stroke 2004; 35: 2648-2651
  • 45 Ma B, Wu CF, Yang JY, Wang R, Kano Y, Yuan D. Three new alkaloids from the leaves of Uncaria rhynchophylla . Helv Chim Acta 2009; 92: 1575-1585