Synlett 2017; 28(20): 2886-2890
DOI: 10.1055/s-0036-1588516
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Mediated Synthesis of Monofluoro Aryl Acetates via Decarboxylative Cross-Coupling

Anis Fahandej-Sadi, Rylan J. Lundgren*
Further Information

Publication History

Received: 27 May 2017

Accepted after revision: 03 July 2017

Publication Date:
08 August 2017 (eFirst)

Dedicated to Victor Snieckus on the occasion of his 80th birthday.

Abstract

We report the Cu-promoted oxidative cross-coupling of α-fluoromalonate half-esters and aryl boron reagents to deliver mono­fluoro α-aryl acetates under mild conditions (in air at room temperature). The reaction uses a simple, readily available monofluorinated building block to generate arylated compounds with functional groups that are not easily tolerated by existing methods, such as aryl bromides, iodides, pyridines, and pyrimidines.

Supporting Information

 
  • References and Notes

    • 1a Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1b Fujiwara T. O’Hagan D. J. Fluorine Chem. 2014; 167: 16
    • 1c Wang J. Sanchez-Rosello M. Acena JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 1d Gillis EP. Eastman KJ. Hill MD. Donnelly DJ. Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 1e Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Acena JL. Soloshonok VA. Izawa K. Liu H. Chem. Rev. 2016; 116: 422
    • 2a Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 2b Champagne PA. Desroches J. Hamel JD. Vandamme M. Paquin JF. Chem. Rev. 2015; 115: 9073
    • 2c Yang XY. Wu T. Phipps RJ. Toste FD. Chem. Rev. 2015; 115: 826
    • 3a Gray EE. Nielsen MK. Choquette KA. Kalow JA. Graham TJ. Doyle AG. J. Am. Chem. Soc. 2016; 138: 10802
    • 3b Lee SY. Neufeind S. Fu GC. J. Am. Chem. Soc. 2014; 136: 8899
    • 3c Li FY. Wu ZJ. Wang J. Angew. Chem. Int. Ed. 2015; 54: 656
    • 3d Paull DH. Scerba MT. Alden-Danforth E. Widger LR. Lectka T. J. Am. Chem. Soc. 2008; 130: 17260
  • 4 For example, see the supporting information section of: Verhoog S. Pfeifer L. Khotavivattana T. Calderwood S. Collier TL. Wheelhouse K. Tredwell M. Gouverneur V. Synlett 2016; 27: 25
  • 5 Kabore L. Chebli S. Faure R. Laurent E. Marquet B. Tetrahedron Lett. 1990; 31: 3137
  • 6 For a representative example, see: Audia JE. Thompson RC. Wilkie SC. Britton TC. Porter WJ. Huffman GW. Latimer LH. Elan Pharmaceuticals, Inc., Eli Lilly and Company Patent US6509331 B1, 2003
  • 7 For an improved protocol achieved by reagent development, see: Goldberg NW. Shen X. Li J. Ritter T. Org. Lett. 2016; 18: 6102
  • 8 The direct use of fluoroacetic acid is not advisable because of its high toxicity, see: Goncharov NV. Jenkins RO. Radilov AS. J. Appl. Toxicol. 2006; 26: 148
    • 9a Qing F.-L. Guo C. Yue X. Synthesis 2010; 1837
    • 9b Su YM. Feng GS. Wang ZY. Lan Q. Wang XS. Angew. Chem. Int. Ed. 2015; 54: 6003
    • 9c Wu Y. Zhang HR. Cao YX. Lan Q. Wang XS. Org. Lett. 2016; 18: 5564
  • 10 For the Ir-catalyzed coupling with electron-rich heteroarenes, see: Yu W. Xu X.-H. Qing F.-L. New J. Chem. 2016; 40: 6564
  • 11 Harsanyi A. Sandford G. Yufit DS. Howard JA. Beilstein J. Org. Chem. 2014; 10: 1213
  • 12 Beare NA. Hartwig JF. J. Org. Chem. 2002; 67: 541
    • 13a Moon PJ. Halperin HM. Lundgren RJ. Angew. Chem. Int. Ed. 2016; 55: 1894
    • 13b Moon PJ. Yin S. Lundgren RJ. J. Am. Chem. Soc. 2016; 138: 13826
    • 13c Moon PJ. Lundgren RJ. Synlett 2017; 28: 515
  • 14 For a review of decarboxylative carbon–carbon bond-forming processes, see: Patra T. Maiti D. Chem. Eur. J. 2017; 23: 7382
    • 15a Hine J. Mahone LG. Liotta CL. J. Am. Chem. Soc. 1967; 89: 5911
    • 15b Zhang Z. Puente A. Wang F. Rahm M. Mei Y. Mayr H. Prakash GK. Angew. Chem. Int. Ed. 2016; 55: 12845
  • 16 Xia T. He L. Liu YA. Hartwig JF. Liao X. Org. Lett. 2017; 19: 2610
    • 17a King AE. Ryland BL. Brunold TC. Stahl SS. Organometallics 2012; 31: 7948
    • 17b Lam PY. S. Chan–Lam Coupling Reaction: Copper-promoted C–Element Bond Oxidative Coupling Reaction with Boronic Acids . In Synthetic Methods in Drug Discovery . Vol. 1 Blakemore DC. Doyle PM. Fobian YM. Chapter 7 The Royal Society of Chemistry; Cambridge, UK; 2015: pp 242-273
  • 18 Huang Z. Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 1028
    • 19a Fortner KC. Shair MD. J. Am. Chem. Soc. 2007; 129: 1032
    • 19b Lalic G. Aloise AD. Shair MD. J. Am. Chem. Soc. 2003; 125: 2852
  • 20 General Procedure for the Copper-Mediated Synthesis of Monofluoro Aryl Acetates via Decarboxylative Cross-Coupling; Procedure A (0.50 mmol scale): In an atmosphere controlled glovebox, Cu(OTf)2 (90.4 mg, 0.250 mmol, 0.50 equiv) and aryl boronic ester (1.25 mmol, 2.5 equiv) or aryl boroxine (0.42 mmol, 2.5 equiv Ar-B) were added sequentially to a 1 dram screw-top vial containing a stir bar. The fluoromalonic half ester (0.50 mmol, 1.0 equiv) was added as a solution in anhydrous DMA (1.0 mL). Additional DMA (2 × 0.6 mL) was used to quantitatively transfer the solution to the reaction mixture. The solution was stirred until the majority of the solid had dissolved, followed by the addition of NEt3 (0.2 mL, 1.5 mmol, 3.0 equiv). The vial was sealed with a PTFE-lined cap, removed from the glovebox, and the PTFE septum was pierced with an 18 gauge needle. The reaction mixture was gently stirred at room temperature. Upon reaction completion (24 to 72 h), the reaction mixture was diluted with EtOAc (60 mL), and washed sequentially with NH4Cl (60 mL), 0.5 M NaOH (2 × 60 mL), and brine (60 mL). The organic layer was dried with Na2SO4, concentrated in vacuo, and purified by silica gel chromatography. Note, the needle gauge and vial size can influence the reaction rates and overall efficiency, see the Supporting Information for more detail. Reactions conducted without the use of a glovebox gave similar results. Cu(OTf)2 and aryl boroxines are hydroscopic and should be stored under inert gas. Synthesis of 2b: Prepared according to Procedure A from the corresponding aryl boroxine (229 mg, 0.42 mmol, 2.5 equiv Ar–B) and fluoromalonic half ester (75 mg, 0.50 mmol, 1.0 equiv), 49 h. Isolated in 73% yield after purification by column chromatography (10:1, Hex/EtOAc) as a light-yellow oil. 1H NMR (CDCl3, 700 MHz): δ = 7.63–7.61 (m, 1 H), 7.54–7.51 (m, 1 H), 7.41–7.38 (m, 1 H), 7.29–7.26 (m, 1 H), 5.72 (d, J = 47.4 Hz, 1 H), 4.30–4.20 (m, 2 H), 1.26 (t, J = 7.2 Hz, 3 H); 13C NMR (CDCl3, 176 MHz): δ = 167.9 (d, J = 27.1 Hz), 136.3 (d, J = 21.3 Hz), 132.6, 130.3, 129.5 (d, J = 6.7 Hz), 125.0 (d, J = 6.2 Hz), 122.8, 88.4 (d, J = 187.6 Hz), 62.1, 14.0; 19F NMR (CDCl3, 377 MHz): δ = –182.3 (d, J = 47.4 Hz); HRMS (EI): m/z [M]+ calcd for C10H10BrFO4: 259.9848; found: 259.9846