Synlett 2018; 29(12): 1537-1542
DOI: 10.1055/s-0037-1609479
synpacts
© Georg Thieme Verlag Stuttgart · New York

"It’s a (Kinetic) Trap!" – Selectively Differentiating Allylic Azide Isomers

Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55455, USA   Email: jtopczew@umn.edu
,
Matthew R. Porter
Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55455, USA   Email: jtopczew@umn.edu
› Author Affiliations
Financial support was provided by the University of Minnesota and The American Chemical Society’s Petroleum Research Fund (PRF # 56505-DNI1). This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM124718.
Further Information

Publication History

Received: 14 February 2018

Accepted after revision: 16 March 2018

Publication Date:
12 April 2018 (online)


Abstract

Allylic azides are known to undergo the Winstein rearrangement and are often isolated as an equilibrating mixture of isomers. While this process has been known for almost 60 years, very few synthetic applications of this process have been reported. The absence of methods exploiting these intermediates likely stems from a paucity of approaches for gaining the required selectivity to differentiate the isomers. Our lab has made some progress in leveraging this unusual reaction into practical synthetic methodology. Presented herein is a summary of our lab’s recent accomplishments in selectively trapping allylic azides.

1 Introduction

2 Background: Allylic Azides

3 Dynamic Cyclization of Imidates

4 Summary and Outlook

 
  • References

  • 1 Bräse S. Gil C. Knepper K. Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
  • 2 Bräse S. Banert K. In Organic Azides: Synthesis and Applications . John Wiley and Sons; Chichester: 2010
  • 3 Scriven EF. V. Turnbull K. Chem. Rev. 1988; 88: 297
  • 4 Carey FA. Giuliano RM. Organic Chemistry . McGraw-Hill Education; New York, NY: 2017
  • 5 Trost BM. Chem. Pharm. Bull. (Tokyo) 2002; 50: 1
  • 6 Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 7 Weaver JD. Recio A. Grenning AJ. Tunge JA. Chem. Rev. 2011; 111: 1846
  • 8 Lu Z. Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
  • 9 Martín Castro AM. Chem. Rev. 2004; 104: 2939
  • 10 Huo H.-X. Duvall JR. Huang M.-Y. Hong R. Org. Chem. Front. 2014; 1: 303
  • 11 Yus M. Gonzalez-Gomez JC. Foubelo F. Chem. Rev. 2011; 111: 7774
  • 12 Roush WR. Walts AE. Hoong LK. J. Am. Chem. Soc. 1985; 107: 8186
  • 13 Brown HC. Bhat KS. J. Am. Chem. Soc. 1986; 108: 293
  • 14 Gagneuz A. Winstein S. Young WG. J. Am. Chem. Soc. 1960; 82: 5956
  • 15 Vander Werf CA. Heisler RV. McEwen WE. J. Am. Chem. Soc. 1954; 76: 1231
  • 16 Vander Werf CA. Heasley VL. J. Org. Chem. 1966; 31: 3534
  • 17 Maag H. Rydzewski RM. J. Org. Chem. 1992; 57: 5823
  • 18 Arimoto M. Yamaguchi H. Fujita E. Ochiai M. Nagao Y. Tetra­hedron Lett. 1987; 28: 6289
  • 19 Murahashi S. Taniguchi Y. Imada Y. Tanigawa Y. J. Org. Chem. 1989; 54: 3292
  • 20 Packard MH. Cox JH. Suding VP. Topczewski JJ. Eur. J. Org. Chem. 2017; 6365
  • 21 Klepper F. Jahn E.-MM. Hickmann V. Carell T. Angew. Chem. Int. Ed. 2007; 46: 2325
  • 22 Trost BM. Pulley SR. Tetrahedron Lett. 1995; 36: 8737
  • 23 Feldman AK. Colasson BB. Sharpless KB. Fokin VV. J. Am. Chem. Soc. 2005; 127: 13444
  • 24 Swern D. Chem. Rev. 1949; 45: 1
  • 25 Craig D. Harvey JW. O’Brien AG. White AJ. P. Org. Biomol. Chem. 2011; 9: 7057
  • 26 Liu R. Gutierrez O. Tantillo DJ. Aubé J. J. Am. Chem. Soc. 2012; 134: 6528
  • 27 Aube J. Milligan GL. J. Am. Chem. Soc. 1991; 113: 8965
  • 28 Vekariya RH. Liu R. Aubé J. Org. Lett. 2014; 16: 1844
  • 29 Pellissier H. Tetrahedron 2003; 59: 8291
  • 30 Pellissier H. Tetrahedron 2008; 64: 3769
  • 31 Pellissier H. Tetrahedron 2016; 72: 3133
  • 32 Steinreiber J. Faber K. Griengl H. Chem. Eur. J. 2008; 14: 8060
  • 33 Faber K. Chem. Eur. J. 2001; 7: 5004
  • 34 Ott AA. Goshey CS. Topczewski JJ. J. Am. Chem. Soc. 2017; 139: 7737
  • 35 Porter MR. Shaker RM. Calcanas C. Topczewski JJ. J. Am. Chem. Soc. 2018; 140: 1211
  • 36 Streitwieser A. Chem. Rev. 1956; 56: 571
  • 37 Topczewski JJ. Tewson TJ. Nguyen HM. J. Am. Chem. Soc. 2011; 133: 19318
  • 38 Zhang Q. Stockdale DP. Mixdorf JC. Topczewski JJ. Nguyen HM. J. Am. Chem. Soc. 2015; 137: 11912
  • 39 Jiang X. Pan Z. Douglas CJ. Tetrahedron Lett. 2015; 56: 5324
  • 40 King SM. Herzon SB. Alkaloids Chem. Biol. 2014; 73: 161
  • 41 Calandra NA. King SM. Herzon SB. J. Org. Chem. 2013; 78: 10031
  • 42 Jones SB. He L. Castle SL. Org. Lett. 2006; 8: 3757
  • 43 Herzon SB. Calandra NA. King SM. Angew. Chem. Int. Ed. 2011; 50: 8863
  • 44 Schultz AG. Wang A. J. Am. Chem. Soc. 1998; 120: 8259
  • 45 Carroll AR. Arumugan T. Redburn J. Ngo A. Guymer GP. Forster PI. Quinn RJ. J. Nat. Prod. 2010; 73: 988
  • 46 Zhang H. Yue J.-M. J. Nat. Prod. 2005; 68: 1201
  • 47 Evans DA. Weber AE. J. Am. Chem. Soc. 1987; 109: 7151