Synthesis 2018; 50(18): 3549-3570
DOI: 10.1055/s-0037-1610193
review
© Georg Thieme Verlag Stuttgart · New York

Interrupted Ugi and Passerini Reactions: An Underexplored Treasure Island

Mariateresa Giustiniano*
a   Dipartimento di Farmacia, Università degli Studi di Napoli ‘Federico II’, via D. Montesano 49, 80131 Napoli, Italy   Email: mariateresa.giustiniano@unina.it
,
Lisa Moni*
b   Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova, Italy   Email: lisa.moni@unige.it
,
Luca Sangaletti
c   Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, largo Donegani 2, 28100 Novara, Italy   Email: giancesare.tron@uniupo.it
,
Sveva Pelliccia
a   Dipartimento di Farmacia, Università degli Studi di Napoli ‘Federico II’, via D. Montesano 49, 80131 Napoli, Italy   Email: mariateresa.giustiniano@unina.it
,
Andrea Basso
b   Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova, Italy   Email: lisa.moni@unige.it
,
Ettore Novellino
a   Dipartimento di Farmacia, Università degli Studi di Napoli ‘Federico II’, via D. Montesano 49, 80131 Napoli, Italy   Email: mariateresa.giustiniano@unina.it
,
Gian Cesare Tron*
c   Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, largo Donegani 2, 28100 Novara, Italy   Email: giancesare.tron@uniupo.it
› Author Affiliations
Financial support from Università del Piemonte Orientale, Novara, Università di Genova and Università di Napoli is acknowledged. M.G. acknowledges the Associazione Italiana per la Ricerca sul Cancro (AIRC; grant MFAG 18793).
Further Information

Publication History

Received: 06 April 2018

Accepted after revision: 14 May 2018

Publication Date:
15 August 2018 (online)


Abstract

The formation of the key short-lived intermediate nitrilium ion in the Passerini and Ugi reactions was recognized early in the discovery of these two-multicomponent transformations. Surprisingly, the idea of intramolecularly intercepting it, eluding the attack by the carboxylate, and thus interrupting the normal course of the reaction, was missed by chemists for several decades. In this review we describe, in an exhaustive manner, the reported synthetic approaches, which can be categorized as interrupted Passerini/Ugi reactions. Besides, the clear goal of this review is to show the potential of these transformations, whilst highlighting the underexplored combinations of reagents toward the identification of novel interrupted Passerini/Ugi reactions.

1 Introduction

2 The Interrupted Ugi Reaction

2.1 The Interrupting Functional Group is Present on the Amine Reactant

2.2 The Interrupting Functional Group is Present on the Isocyanide Reactant

2.3 The Interrupting Functional Group is Present on the Carbonyl Reactant

3 The Interrupted Passerini Reaction

3.1 The Interrupting Functional Group is Present on the Carbonyl Reactant

3.2 The Interrupting Functional Group is Present on the Isocyanide Reactant

4 Conclusions and Future Outlook

 
  • References

    • 1a Passerini M. Gazz. Chim. Ital. 1920; 50: 340
    • 1b Passerini M. Gazz. Chim. Ital. 1921; 51: 126
    • 2a Ugi I. Meyr U. Fetzer U. Steinbrückner C. Angew. Chem. 1959; 71: 386
    • 2b Ugi I. Steinbrückner C. Angew. Chem. 1960; 72: 267
    • 3a Ramozzi R. Morokuma K. J. Org. Chem. 2015; 80: 5652
    • 3b Chéron N. Ramozzi R. El Kaïm L. Grimaud L. Fleurat-Lessard P. J. Org. Chem. 2012; 77: 1361
    • 3c Maeda S. Komagawa S. Uchiyama M. Morokuma K. Angew. Chem. 2011; 123: 670
    • 3d Banfi L. Basso A. Guanti G. Riva R. In Multicomponent Reactions . Zhu J. Bienaymé H. Wiley-VCH; Weinheim: 2005: 1
  • 4 El Kaïm L. Grimaud L. Oble J. Angew. Chem. Int. Ed. 2005; 44: 7961
  • 5 Giovenzana GB. Tron GC. Di Paola S. Menegotto IG. Pirali T. Angew. Chem. Int. Ed. 2006; 45: 1099
    • 6a Sun X. Janvier P. Zhao G. Bienaymé H. Zhu J. Org. Lett. 2001; 3: 877
    • 6b Janvier P. Sun X. Bienaymé H. Zhu J. J. Am. Chem. Soc. 2002; 124: 2560
    • 7a Cioc RC. Preschel HD. van der Heijden G. Ruijter E. Orru RV. A. Chem. Eur. J. 2016; 22: 7836
    • 7b Cioc RC. Schuckman P. Preschel HD. Vlaar T. Ruijter E. Orru RV. A. Org. Lett. 2016; 18: 3562
    • 8a Passerini M. Gazz. Chim. Ital. 1924; 54: 529
    • 8b Ugi I. Angew. Chem. Int. Ed. 1962; 1: 8
    • 8c Shaabani A. Keshipour S. Shaabani S. Mahyari M. Tetrahedron Lett. 2012; 53: 1641
    • 8d Pan SC. List B. Angew. Chem. Int. Ed. 2008; 47: 3622
  • 9 Giustiniano M. Novellino E. Tron GC. Synthesis 2016; 48: 2721
  • 10 Deyrup JA. Vestling MM. Hagan WV. Yun HY. Tetrahedron 1969; 25: 1467
    • 11a Bienaymé H. Bouzid K. Angew. Chem. Int. Ed. 1998; 37: 2234
    • 11b Blackburn C. Guan B. Fleming P. Shiosaki K. Tsai S. Tetrahedron Lett. 1998; 39: 3635
    • 11c Groebke K. Weber L. Mehlin F. Synlett 1998; 661

      Partial coverage can be found in:
    • 12a Kruithof A. Ruijter E. Orru RV. A. Chem. Asian J. 2015; 10: 508
    • 12b Váradi A. Palmer TC. Dardashti RN. Majumdar S. Molecules 2016; 21: 19
    • 12c El Kaim L. Grimaud L. Tetrahedron 2009; 65: 2153
  • 13 Quast H. Aldenkortt S. Chem. Eur. J. 1996; 2: 462
  • 14 Shaabani A. Maleki A. Moghimi-Rad J. J. Org. Chem. 2007; 72: 6309
  • 15 Edayadulla N. Lee YR. RCS Adv. 2014; 4: 11459
  • 16 Krasavin M. Parchinsky V. Synlett 2008; 645
    • 17a Heravi MM. Baghernejad B. Oskooie HA. Tetrahedron Lett. 2009; 50: 767
    • 17b Li J. Liu Y. Li C. Jia X. Tetrahedron Lett. 2009; 50: 6502
    • 17c Liu J.-Y. Liu J. Wang J.-D. Jiao D.-Q. Liu H.-W. Synth. Commun. 2010; 40: 2047
    • 18a Shaabani A. Maleki A. Mofakham H. Khavasi HR. J. Comb. Chem. 2008; 10: 323
    • 18b Shobha D. Chari MA. Mukkanti K. Kim SY. Tetrahedron Lett. 2012; 53: 2675
  • 19 Azad CS. Narula AK. Eur. J. Org. Chem. 2017; 6413
  • 20 Schneekloth JS. Kim JJr. Sorensen EJ. Tetrahedron 2009; 65: 3096
  • 21 Kim J. Schneekloth JS. Sorensen EJ. Chem. Sci. 2012; 3: 2849
  • 22 La Spisa F. Meneghetti F. Pozzi B. Tron GC. Synthesis 2015; 47: 489
  • 23 Heravi MM. Baghernejad B. Oskooie HA. Mol. Diversity 2009; 13: 395
  • 24 Garcìa-Gonzàlez MC. Gonzàlez-Zamora E. Santillan R. Domìnguez O. Méndez-Stivalet JM. Farfàn N. Tetrahedron 2009; 65: 5337
  • 25 Váradi A. Palmer TC. Notis PR. Redel-Traub GN. Afonin D. Subrath JJ. Pasternak GW. Hu C. Sharma I. Majumdar S. Org. Lett. 2014; 16: 1668
  • 26 Heravi MM. Baghernejad B. Oskooie HA. Synlett 2009; 1123
  • 27 Tsirulnikov S. Dmitriev D. Krasavin M. Synlett 2010; 1935
  • 28 Diorazio LJ. Motherwell WB. Sheppard TD. Waller RW. Synlett 2006; 2281
  • 29 Waller RW. Diorazio LJ. Taylor BA. Motherwell WB. Sheppard TD. Tetrahedron 2010; 66: 6496
  • 30 Keung W. Bakir F. Patron AP. Rogers D. Priest CD. Darmohusodo V. Tetrahedron Lett. 2004; 45: 733
  • 31 Kysil V. Tkachenko S. Khvat A. Williams C. Tsirulnikov S. Churakova M. Ivachtchenko A. Tetrahedron Lett. 2007; 48: 6239
    • 32a Kysil V. Khvat A. Tsirulnikov S. Tkachenko S. Ivachtchenko A. Tetrahedron Lett. 2009; 50: 2854
    • 32b Kysil V. Khvat A. Tsirulnikov S. Tkachenko S. Williams C. Churakova M. Ivachtchenko A. Eur. J. Org. Chem. 2010; 8: 1525
  • 33 Hashimoto T. Kimura H. Kawamata Y. Maruoka K. Angew. Chem. Int. Ed. 2012; 51: 7279
  • 34 Vavsari VF. Ziarani GM. Balalaie S. Badiei A. Golmohammadi F. Ramezanpour S. Rominger F. ChemistrySelect 2017; 2: 3496
  • 35 Behnke D. Taube R. Illgen K. Nerdinger S. Herdtweck E. Synlett 2004; 688
  • 36 Shaabani A. Maleki A. Mofakham H. Khavasi HR. J. Comb. Chem. 2008; 10: 883
  • 37 See for example: Shaaban S. Abdel-Wahab BF. Mol. Diversity 2016; 20: 233
    • 38a Carballares S. Espinosa JF. Org. Lett. 2005; 7: 2329
    • 38b Illgen K. Nerdinger S. Behnke D. Friedrich C. Org. Lett. 2005; 7: 39
  • 39 Martinez-Ariza G. Ayaz M. Medda F. Hulme C. J. Org. Chem. 2014; 79: 5153
  • 40 Deyrup JA. Killion KK. J. Heterocycl. Chem. 1972; 9: 1045
  • 41 Srivastava V. Singh PK. Singh PP. Chem. Heterocycl. Compd. 2014; 50: 573
  • 42 Franckevičius V. Longbottom DA. Turner RM. Ley SV. Synthesis 2006; 3215
  • 43 Giustiniano M. Basso A. Mercalli V. Massarotti A. Novellino E. Tron GC. Zhu J. Chem. Soc. Rev. 2017; 46: 1295
  • 44 Saya JM. Oppelaar B. Cioc RC. van der Heijden G. Vande Velde CM. L. Orru RV. A. Ruijter E. Chem. Commun. 2016; 52: 12482
  • 45 Kobayashi K. Okamura Y. Fukamachi S. Konishi H. Heterocycles 2010; 81: 1253
  • 46 Kobayashi K. Takagoshi K. Kondo S. Morikawa O. Konishi H. Bull. Chem. Soc. Jpn. 2004; 77: 553
  • 47 Kobayashi K. Matsumoto T. Irisawa S. Yoneda K. Morikawa O. Konishi H. Heterocycles 2001; 55: 973
  • 48 Arend M. Risch N. Synlett 1997; 974
  • 49 Kobayashi K. Izumi Y. Hayashi K. Morikawa O. Konishi H. Bull. Chem. Soc. Jpn. 2005; 78: 2171
  • 50 Yue T. Wang M.-X. Wang D.-X. Masson G. Zhu J. Angew. Chem. Int. Ed. 2009; 48: 6717
  • 51 Elders N. Ruijter E. de Kanter FJ. J. Janssen E. Lutz M. Spek AL. Orru RV. A. Chem. Eur. J. 2009; 15: 6096
    • 52a Bon RS. Hong C. Bouma MJ. Schmitz RF. de Kanter FJ. J. Lutz M. Spek AL. Orru RV. A. Org. Lett. 2003; 5: 3759
    • 52b Elders N. Ruijter E. de Kanter FJ. J. Groen MB. Orru RV. A. Chem. Eur. J. 2008; 14: 4961
  • 53 Scheffelaar R. Paravidino M. Muilwijk D. Lutz M. Spek AL. de Kanter FJ. J. Orru RV. A. Ruijter E. Org. Lett. 2009; 11: 125
    • 54a Bonne D. Dekhane M. Zhu J. Angew. Chem. Int. Ed. 2007; 46: 2485
    • 54b Lalli C. Bouma MJ. Bonne D. Masson G. Zhu J. Chem. Eur. J. 2011; 17: 880
  • 55 Kobayashi K. Hashimoto H. Matsumoto M. Inouchi H. Tetrahedron 2014; 70: 6398
  • 56 Bonne D. Dekhane M. Zhu J. Org. Lett. 2004; 6: 4771
  • 57 Bonne D. Dekhane M. Zhu J. J. Am. Chem. Soc. 2005; 127: 6926
  • 58 Bonne D. Dekhane M. Zhu J. Org. Lett. 2005; 7: 5285
  • 59 Bossio R. Marcaccini S. Paoli P. Pepino R. Polo C. Synthesis 1991; 999
  • 60 Kobayashi K. Shirai Y. Fukamachi S. Konishi H. Synthesis 2010; 666
  • 61 Adib M. Mahdavi M. Bagherzadeh S. Zhu L.-G. Rahimi-Nasrabadi M. Tetrahedron Lett. 2010; 51: 27
  • 62 Mitra S. Hota SK. Chattopadhyay P. Synthesis 2010; 3899
  • 63 Ramazani A. Mahyari AT. Rouhani M. Rezaei A. Tetrahedron Lett. 2009; 50: 5625
  • 64 Shiri M. Faghihi Z. Oskouei HA. Heravi MM. Fazelzadeh S. Notash B. RSC Adv. 2016; 6: 92235
  • 65 Isaacson J. Kobayashi Y. Angew. Chem. Int. Ed. 2009; 48: 1845
  • 66 Faggi C. García-Valverde M. Marcaccini S. Menchi G. Org. Lett. 2010; 12: 788
  • 67 Zhang Y. Ao Y.-F. Huang Z.-T. Wang D.-X. Wang M.-X. Zhu J. Angew. Chem. Int. Ed. 2016; 55: 5282
  • 68 Kobayashi K. Takanohashi A. Hashimoto K. Morikawa O. Konishi H. Tetrahedron 2006; 62: 10379
  • 69 Kobayashi K. Himei Y. Izumi Y. Fukamachi S. Morikawa O. Konishi H. Heterocycles 2007; 3: 691
  • 70 Lei C.-H. Zhao L. Wang D.-X. Zhu J. Wang M.-X. Org. Chem. Front. 2014; 1: 909
  • 71 Giustiniano M. Pelliccia S. Sangaletti L. Meneghetti F. Amato J. Novellino E. Tron GC. Tetrahedron Lett. 2017; 58: 4264
  • 72 Dev K. Ramakrishna E. Maurya SW. Siddiqui IR. Kant R. Maurya R. Tetrahedron Lett. 2017; 58: 1202
  • 73 Middleton WJ. England DC. Crespan CG. J. Org. Chem. 1967; 32: 948
  • 74 Saegusa T. Takaishi N. Fuji H. Tetrahedron 1968; 24: 3795
  • 75 Kabbe HJ. Chem. Ber. 1969; 102: 1410
  • 76 Zeeh B. Synthesis 1969; 65
  • 77 Moderhack D. Synthesis 1985; 1083
  • 78 Bayat M. Nasri S. Helv. Chim. Acta 2011; 94: 1657
  • 79 As an example, the NMR analytical data of compound 3a (see ref. 76) are identical to those of the corresponding Passerini adduct reported in: Polindara-Garcìa LA. Eusebio J. Eur. J. Org. Chem. 2016; 1095
  • 80 Bayat M. Nasehfard H. J. Heterocycl. Chem. 2016; 53: 1474
  • 81 Kazemizadeh AR. Ramazani A. Asian J. Chem. 2013; 25: 1558
  • 82 Li M. Qiu B. Kong X.-J. Wen L.-R. Org. Chem. Front. 2015; 2: 1326
  • 83 Yavari I. Shaabani A. Asghari S. Olmstead MM. Safari N. J. Fluorine Chem. 1997; 86: 77
  • 84 Shaabani A. Bagzir A. Soleimani K. Bijanzahdeh HR. J. Fluorine Chem. 2002; 116: 93
  • 85 Soeta T. Kojima Y. Ukaji Y. Inomata K. Tetrahedron Lett. 2011; 52: 2557
  • 86 Soeta T. Shitaya S. Okuno T. Fujinami S. Ukaji Y. Tetrahedron 2016; 72: 7901
  • 87 Krasavin M. Busel A. Parchinsky V. Tetrahedron Lett. 2009; 50: 5945
  • 88 Lei C.-H. Wang D.-X. Zhao L. Zhu J. Wang M.-X. J. Am. Chem. Soc. 2013; 135: 4708
  • 89 Ma G.-H. Jiang B. Tu X.-J. Ning Y. Tu S.-J. Li G. Org. Lett. 2014; 16: 4504
  • 90 Ponra S. Nyadanu A. El Kaïm L. Grimaud L. Vitale MR. Org. Lett. 2016; 18: 4060
  • 91 Xia Q. Ganem B. Org. Lett. 2002; 4: 1631
  • 92 Wang Q. Xia Q. Ganem B. Tetrahedron Lett. 2003; 44: 6825
  • 93 Cuny G. Gámez-Montaño R. Zhu J. Tetrahedron 2004; 60: 4879
    • 94a Wang S.-X. Wang M.-X. Wang D.-X. Zhu J. Org. Lett. 2007; 9: 3615
    • 94b Yue T. Wang M.-X. Wang D.-X. Masson G. Zhu J. J. Org. Chem. 2009; 74: 8396
    • 94c Mihara H. Xu Y. Shepherd NE. Matsunaga S. Shibasaki M. J. Am. Chem. Soc. 2009; 130: 8384
    • 94d Zeng X. Ye K. Lu M. Chua PJ. Tan B. Zhong G. Org. Lett. 2010; 12: 2414
  • 95 Kobayashi K. Irisawa S. Matoba T. Matsumoto T. Yoneda K. Morikawa O. Konishi H. Bull. Chem. Soc. Jpn. 2001; 74: 1109
  • 96 van Dijk T. Slootweg JC. Lammertsma K. Org. Biomol. Chem. 2017; 15: 10134
  • 97 Tobisu M. Yamaguchi S. Chatani N. Org. Lett. 2007; 9: 3351
  • 98 Phan TB. Breugst M. Mayr H. Angew. Chem. Int. Ed. 2006; 45: 3869
  • 99 Mayr H. Ofial AR. J. Phys. Org. Chem. 2008; 21: 584