CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1100-1114
DOI: 10.1055/s-0037-1611651
short review
Copyright with the author

Recent Advances in the Application of Ring-Closing Metathesis for the Synthesis of Unsaturated Nitrogen Heterocycles

Emilia J. Groso
,
Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA   Email: corinnas@umich.edu
› Author Affiliations
We thank the University of Michigan Office of Research and the NIH/National Institute of General Medical Sciences (R01-GM118644) for financial support. E.J.G. thanks the National Science Foundation for a predoctoral fellowship. C.S.S. thanks the David and Lucile Packard Foundation, the Alfred P. Sloan Foundation, and the Camille and Henry Dreyfus Foundation.
Further Information

Publication History

Received: 09 December 2018

Accepted: 14 December 2018

Publication Date:
08 February 2019 (online)


Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

This short review summarizes recent advances relating to the application of ring-closing olefin-olefin and carbonyl-olefin metathesis reactions towards the synthesis of unsaturated five- and six-membered nitrogen heterocycles. These developments include catalyst modifications and reaction designs that will enable access to more complex nitrogen heterocycles.

1 Introduction

2 Expansion of Ring-Closing Metathesis Methods

3 Evaluation of Catalyst Design

4 Indenylidene Catalysts

5 Unsymmetrical N-Heterocyclic Carbene Ligands

6 Carbonyl-Olefin Metathesis

7 Conclusions

 
  • References


    • For leading references, see:
    • 1a Naturally Occurring Pyrrolizidine Alkaloids . Rizk A.-FM. CRC Press; Boca Raton: 1991
    • 1b Mattocks AR. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic Press; London: 1986
    • 1c Bronner SM, Im G.-YJ, Garg NK. In Heterocycles in Natural Product Synthesis . Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011: 221
    • 1d Michael JP. Nat. Prod. Rep. 2008; 25: 139
    • 1e Michael JP. Alkaloids 2001; 55: 91
    • 1f Li X, Li J. Mini-Rev. Med. Chem. 2010; 10: 794
    • 1g Vikatu E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1h Weintraub PM, Sabol JS, Kane JM, Borcherding DR. Tetrahedron 2003; 59: 2953
    • 1i Mitchinson A, Nadin A. J. Chem. Soc., Perkin Trans. 1 2000; 2862 ; and earlier reviews in this series
  • 2 Iminosugars: From Synthesis to Therapeutic Applications . Compain P, Martin OR. Wiley; Chichester: 2007

    • For the therapeutics listed in this review, see:
    • 3a Hollmann M, Heinemann S. Annu. Rev. Neurosci. 1994; 17: 31
    • 3b Iwanami S, Takashima M, Hirata Y, Haseqawa O, Usuda S. J. Med. Chem. 1981; 24: 1224
    • 3c Maring C, McDaniel K, Krueger A, Zhao C, Sun M, Madigan D, DeGoey D, Chen J.-J, Yeung MC, Flosi W, Grampovnik D, Kati W, Klein L, Stewart K, Stoll V, Saldivar S, Montgomery D, Carrick R, Steffy K, Kempf D, Molla A, Kohlbrenner W, Kennedy A, Herrin T, Xu Y, Laver WG. Antiviral Res. 2001; 50: A76 ; Abstract 129
    • 3d For more examples, see reference 1g.

      For examples, see:
    • 5a Choi YH, Choi JY, Yange HY, Kim YH. Tetrahedron: Asymmetry 2002; 13: 801
    • 5b Sweet JA, Cavallari JM, Price WA, Ziller JW, McGrath DV. Tetrahedron: Asymmetry 1997; 8: 207
    • 5c Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159

      For examples, see:
    • 6a Mukaiyamma T, Sakito Y, Asami M. Chem. Lett. 1979; 705
    • 6b Enders D, Thiebes C. Pure Appl. Chem. 2001; 73: 573
    • 6c Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
    • 6d Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 7a Xu Z, Lu X. J. Org. Chem. 1998; 63: 5031
    • 7b Hodgson DM, Miles TJ, Witherington J. Tetrahedron 2003; 59: 9729
    • 7c Hong J, Zhang Z, Lei H, Cheng H, Hu Y, Yang W, Liang Y, Das D, Chen S.-H, Li G. Tetrahedron Lett. 2009; 50: 2525
    • 8a Advances in Heterocyclic Chemistry, Vol. 115. Scriven EF. V, Ramsden C. Academic Press; Cambridge (MA, USA): 2015: 1-354
    • 8b Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev. 2017; 117: 14091
    • 8c Lewis JC, Bergman RG, Ellman JA. Acc. Chem. Res. 2008; 41: 1013
    • 8d Schultz DM, Wolfe JP. Synthesis 2012; 44: 351
    • 8e Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
  • 9 Asymmetric Synthesis of Nitrogen Heterocycles. Royer J. Wiley-VCH; Weinheim: 2009

    • For selected examples, see:
    • 10a Ohno H, Toda A, Miwa Y, Taga T, Osawa E, Yamaoka Y, Fujii N, Ibuka T. J. Org. Chem. 1999; 64: 2992
    • 10b Dieter RK, Yu H. Org. Lett. 2001; 3: 3855
    • 10c Billet M, Schoenfelder A, Klotz P, Mann A. Tetrahedron Lett. 2002; 43: 1453
    • 10d Sai M, Matsubara S. Org. Lett. 2011; 13: 4676
    • 10e Xu T, Mu X, Peng H, Liu G. Angew. Chem. Int. Ed. 2011; 50: 8176
    • 10f Morita N, Krause N. Org. Lett. 2004; 6: 4121
    • 10g Morita N, Krause N. Eur. J. Org. Chem. 2006; 4634
    • 10h Kang S.-K, Kim K.-J. Org. Lett. 2001; 3: 511
    • 10i Ma S, Yu F, Gao W. J. Org. Chem. 2003; 68: 5943
  • 11 Ohno H, Kadoh Y, Fujii N, Tanaka T. Org. Lett. 2006; 8: 947
  • 12 Wu P, Liu H, Tong X. Tetrahedron Lett. 2012; 53: 4673
  • 13 Hayes CJ, Sherlock AE, Green MP, Wilson C, Blake AJ, Selby MD, Prodger JC. J. Org. Chem. 2008; 73: 2041
  • 14 Tran G, Meier R, Harris L, Browne DL, Ley SV. J. Org. Chem. 2012; 77: 11071
    • 15a Boomination SS. K, Hu W.-P, Sendi GP, Wang JJ. Adv. Synth. Catal. 2013; 355: 3570
    • 15b Zheng C, Wang Y, Gan R. Org. Lett. 2015; 17: 916
  • 16 Chogii I, Njardarson JT. Angew. Chem. Int. Ed. 2015; 54: 13706
  • 17 Chelucci G, Saba A. Angew. Chem., Int. Ed. Engl. 1995; 34: 78
  • 18 Duttwyler S, Lu C, Rheingold AL, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2012; 134: 4064
    • 19a Beceño C, Krappitz T, Raabe G, Enders D. Synthesis 2015; 47: 38813
    • 19b He L, Laurent G, Retailleau P, Folleas B, Brayer J.-L, Masson G. Angew. Chem. Int. Ed. 2013; 52: 11088
    • 19c Tambar UK, Lee SK, Leighton JL. J. Am. Chem. Soc. 2010; 132: 10249
  • 20 de la Pradilla RF, Simal C, Bates RH, Viso A, Infantes L. Org. Lett. 2013; 15: 4936
    • 21a Zhu XF, Lan J, Kwon O. J. Am. Chem. Soc. 2003; 125: 4716
    • 21b Zhou L, Yuan C, Zeng Y, Liu H, Wang C, Gao X, Wang Q, Zhang C, Guo H. Chem. Sci. 2018; 9: 1831

      For selected examples, see:
    • 22a Wang Z, Xu H, Su Q, Hu P, Shao P.-L, He Y, Lu Y. Org. Lett. 2017; 19: 3111
    • 22b Hu P, Hu J, Jiao J, Tong X. Angew. Chem. Int. Ed. 2013; 52: 5319
    • 22c Rutjes FP. J. T, Tjen KC. M. F, Wolf LB, Karstens WF. J, Schoemaker HE, Hiemstra H. Org. Lett. 1999; 1: 717
    • 22d Inuki S, Iwata A, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2011; 76: 2072
    • 22e Ohno H, Mizutani T, Kadoh Y, Aso A, Miyamura K, Fujii N, Tanaka T. J. Org. Chem. 2007; 72: 4378
    • 22f Inkui S, Oishi S, Fujii N, Ohno H. Org. Lett. 2008; 10: 5239

      For examples, see:
    • 23a Donohoe TJ, Guyo PM, Helliwell M. Tetrahedron Lett. 1999; 40: 435
    • 23b Schafer A, Schafer B. Tetrahedron 1999; 55: 12309
    • 23c Donohoe TJ, Thomas RE. Chem. Rec. 2007; 7: 180
    • 23d Wu J, Tang W, Pettman A, Xiao J. Adv. Synth. Catal. 2013; 355: 35

      For reviews, see:
    • 24a Blechert S, Schuster M. Angew. Chem., Int. Ed. Engl. 1997; 36: 2036
    • 24b Montgomery TP, Johns AM, Grubbs RH. Catalysts 2017; 6: 87
    • 24c Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
    • 24d Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
    • 25a Fu GC, Grubbs RH. J. Am. Chem. Soc. 1992; 114: 5426
    • 25b Fu GC, Grubbs RH. J. Am. Chem. Soc. 1992; 114: 7324
    • 26a Ulman M, Grubbs RH. J. Org. Chem. 1999; 64: 7202
    • 26b Yee NK, Farina V, Houpis IN, Haddad N, Frutos RP, Gallou F, Wang X.-j, Wei X, Simpson RD, Feng X, Fuchs V, Xu Y, Tan J, Zhang L, Xu J, Smith-Keenan LL, Vitous J, Ridges MD, Spinelli EM, Johnson M. J. Org. Chem. 2006; 71: 7133
    • 26c Hong SH, Wenzel AG, Salguero TT, Day MW, Grubbs RH. J. Am. Chem. Soc. 2007; 129: 7961
    • 26d Manzini S, Poater A, Nelson DJ, Cavallo L, Slawin AM. Z, Nolan SP. Angew. Chem. Int. Ed. 2014; 53: 8995
    • 26e Wilson GO, Porter KA, Weissman H, White SR, Sottos NR, Moore JS. Adv. Synth. Catal. 2009; 351: 1817
    • 26f Lummiss JA. M, Ireland BJ, Sommers JM, Fogg DE. ChemCatChem 2014; 6: 459
    • 26g Ireland BJ, Dobigny BT, Fogg DE. ACS Catal. 2015; 5: 4690
    • 26h Fu GC, Nguyen ST, Grubbs RH. J. Am. Chem. Soc. 1993; 115: 9856
    • 27a Compain P. Adv. Synth. Catal. 2007; 349: 1829
    • 27b Compain P, Hazelard D. Top. Heterocycl. Chem. 2017; 47: 111
    • 27c Philips A. J, Abell A. D. Aldrichchim. Acta. 1999; 32: 75
    • 27d Vernall A. J, Abell A. D. Aldrichchim. Acta. 2003; 36: 93
    • 27e Felpin F.-X, Lebreton J. Eur. J. Org. Chem. 2003; 3693
    • 27f Deiters A, Martin S. F. Chem. Rev. 2004; 104: 2199
    • 27g Chattopadhyay S. K, Karmakar S, Majumdar K. C, Rahaman H, Roy B. Tetrahedron 2007; 63: 3919
    • 28a Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
    • 28b Trnka TM, Morgan JP, Sanford MS, Wilhelm TE, School M, Choi TL, Ding S, Day MW, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 2546
  • 29 Zaidi K. Pharmacopeial Forum 2008; 34: 1345
  • 30 Kuhn KM, Champagne TM, Hong SH, Wei W.-H, Nickel A, Lee CW, Virgil SC, Grubbs RH, Pederson RL. Org. Lett. 2010; 12: 984

    • For reviews of metal-catalyzed cross-couplings, see:
    • 32a Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
    • 32b Cross-Coupling Reactions: A Practical Guide. In Topics in Current Chemistry, Vol. 219. Miyaura N. Springer Verlag; New York: 2002
    • 32c Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E.-i. Wiley-Interscience; New York: 2002
  • 33 Gatti M, Drinkel E, Wu L, Pusteria I, Gaggia F, Dorta R. J. Am. Chem. Soc. 2010; 132: 15179
    • 34a Fürstner A, Leitner A. Angew. Chem. Int. Ed. 2003; 42: 308
    • 34b Fürstner A, Grabowski J, Lehmann CW. J. Org. Chem. 1999; 64: 8275
    • 34c Scheiper B, Glorius F, Leitner A, Fürstner A. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11960
    • 34d Edwards AS, Wybrow RA, Johnstone C, Adams H, Harrity JP. Chem. Commun. 2002; 1542
    • 34e Gracias V, Gasiecki AF, Moor JD, Akritopoulou-Zanze I, Djuric SW. Tetrahedron Lett. 2006; 47: 8977
    • 34f Prusov E, Maier ME. Tetrahedron 2007; 63: 10486
    • 34g Wright DL, Schulte JP. II, Page MA. Org. Lett. 2000; 2: 1847
  • 35 Yang Q, Xiao WJ, Yu Z. Org. Lett. 2005; 7: 871
  • 36 Woodward CP, Spiccia ND, Jackson WR, Robinson AJ. Chem. Commun. 2011; 47: 779
    • 37a Boger DL, Turnbull P. J. Org. Chem. 1997; 62: 5849
    • 37b Marten SF, Liao YS, Wong YL, Reing T. Tetrahedron Lett. 1994; 35: 691
    • 37c Pilli RA, de Oliveira MD. C. F. Nat. Prod. Rep. 2000; 17: 117
    • 37d Sakai R, Higa T. J. Am. Chem. Soc. 1986; 108: 6404
    • 37e Wipf P, Spencer SR. J. Am. Chem. Soc. 2005; 127: 225
  • 38 Teichert JF, Zhang S, van Zijl AW, Slaa JW, Minnaard AJ, Feringa BL. Org. Lett. 2010; 12: 4658
    • 39a Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
    • 39b Gessler S, Randl S, Blechert S. Tetrahedron Lett. 2000; 41: 9973
    • 40a Grela K, Harutyunyan S, Michrowska A. Angew. Chem. Int. Ed. 2002; 41: 4038
    • 40b Grela K, Kim M. Eur. J. Org. Chem. 2003; 963
    • 40c Van Veldhuizen JJ, Gillingham DG, Garber SB, Katoaka O, Hoveyda AH. J. Am. Chem. Soc. 2003; 125: 12502
  • 41 Tzur E, Szadkowska A, Ben-Asuly A, Makal A, Goldberg I, Wozniak K, Grela K, Lemcoff NG. Chem. Eur. J. 2010; 16: 8726
    • 42a Schmidt B. Angew. Chem. Int. Ed. 2003; 42: 4996
    • 42b Yamamoto Y, Nakagai Y, Ohkoshi N, Itoh K. J. Am. Chem. Soc. 2001; 123: 6372
    • 42c Hong S, Sanders DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
    • 43a Slugovc C, Perner B, Stelzer F, Mereiter K. Organometallics 2004; 23: 3622
    • 43b Burtscher D, Perner B, Mereiter K, Slugovc C. J. Organomet. Chem. 2006; 691: 5423
    • 44a Ung T, Heijl A, Grubbs RH, Schrodi Y. Organometallics 2004; 23: 5399
    • 44b Slugovc C, Burtscher D, Stelzer F, Mereiter K. Organometallics 2005; 24: 2255
    • 44c Szadkowska A, Gstrein X, Burtscher D, Jarzembska K, Wozniak K, Slugovc C, Grela K. Organometallics 2010; 29: 117
    • 45a Szadkowska A, Makal A, Wozniak K, Kadyrov R, Grela K. Organometallics 2009; 28: 2693
    • 45b Kost T, Sigalov M, Goldberg I, Ben-Asuly A, Lemcoff NG. J. Organomet. Chem. 2008; 693: 2200
    • 45c Ben-Asuly A, Tzur E, Diesendruck CE, Sigalov M, Goldberg I, Lemcoff NG. Organometallics 2008; 27: 811
    • 45d Ben-Asuly A, Tzur E, Diesendruck CE, Sigalov M, Goldberg I, Lemcoff NG. Organometallics 2009; 28: 4652
  • 46 Diesendruck CE, Tzur E, Ben-Asuly A, Goldberg I, Straub BF, Lemcoff NG. Inorg. Chem. 2009; 48: 10819
  • 47 Lexer C, Burtscher D, Perner B, Tzur E, Lemcoff NG, Slugovc C. J. Organomet. Chem. 2011; 696: 2466
  • 48 Kuethe J, Zhong Y.-L, Yasuda N, Beutner G, Linn K, Kim M, Marcune B, Dreher SD, Humphrey G, Pei T. Org. Lett. 2013; 15: 4174
  • 49 Williams MJ, Kong J, Chung CK, Brunskill A, Campeau L.-C, McLaughlin M. Org. Lett. 2016; 18: 1952
  • 50 Kajetanowicz A, Milewski M, Rogińska J, Gajda R, Woźniak K. Eur. J. Org. Chem. 2017; 626
    • 51a Trnka TM, Grubbs RH. Acc. Chem. Res. 2001; 34: 18
    • 51b Samojlowicz C, Bieniek M, Grela K. Chem. Rev. 2009; 109: 3708
  • 52 Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
    • 53a Love JA, Morgan JP, Trnka TM, Grubbs RH. Angew. Chem. Int. Ed. 2002; 41: 4035
    • 53b Clavier H, Petersen JL, Nolan SP. J. Organomet. Chem. 2006; 691: 54444
    • 54a Boeda F, Clavier H, Nolan SP. Chem. Commun. 2008; 2726
    • 54b Clavier H, Urbina-Blanco CA, Nolan SP. Organometallics 2009; 28: 2848
    • 54c Bantriel X, Schmid TE, Randall RA. M, Slawin AM. Z, Xazin CS. J. Chem. Commun. 2010; 46: 7115
    • 54d Clavier H, Nolan SP. Chem. Eur. J. 2007; 13: 8029
    • 54e Bieniek M, Michrowska A, Usanov DL, Grela K. Chem. Eur. J. 2008; 14: 806
  • 55 Urbina-Blanco CA, Leitgeb A, Slugovc C, Bantreil X, Clavier H, Slawin AM. Z, Nolan SP. Chem. Eur. J. 2011; 17: 5045
  • 56 Manzini S, Urbina Blanco CA, Slawin AM. Z, Nolan SP. Organometallics 2012; 31: 6514
    • 57a Vehlow K, Gessler S, Blechert S. Angew. Chem. Int. Ed. 2007; 46: 8082
    • 57b Hong SH, Chlenov A, Day MW, Grubbs RH. Angew. Chem. Int. Ed. 2007; 46: 5184
    • 58a Chung CK, Grubbs RH. Org. Lett. 2008; 10: 2693
    • 58b Kuhn KM, Bourg J.-B, Chung CK, Virgil SC, Grubbs RH. J. Am. Chem. Soc. 2009; 131: 5313
    • 58c Grisi F, Mariconda A, Costabile C, Bertolasi V, Longo P. Organometallics 2009; 28: 4988
    • 58d Costabile C, Mariconda A, Cavallo L, Longo P, Bertolasi V, Ragone F, Grisi F. Chem. Eur. J. 2011; 17: 8618
  • 59 Torborg C, Szczepaniak G, Zielinski A, Malinska M, Wozniak K, Grela K. Chem. Commun. 2013; 49: 3188
    • 60a Furstner A, Liebl M, Lehmann CW, Picquet M, Kunz R, Bruneau C, Touchard D, Dixneuf PH. Chem. Eur. J. 2000; 6: 1847
    • 60b Miyaki Y, Onishi T, Kurosawa H. Inorg. Chim. Acta 2000; 300–302: 369
    • 60c Wang D, Wurst K, Knolle W, Decker U, Prager L, Naumov S, Buchmeiser MR. Angew. Chem. Int. Ed. 2008; 47: 3267
    • 60d Volland MA. O, Hansen SM, Rominger F, Hofmann P. Organometallics 2004; 23: 800
    • 60e Zirngast M, Pump E, Leitgeb A, Albering JH, Slugovc C. Chem. Commun. 2011; 47: 2261
    • 61a Songis O, Slawin AM. Z, Cazin CS. J. Chem. Commun. 2012; 48: 1266
    • 61b Volland MA. O, Hansen SM, Rominger F, Hofmann P. Organometallics 2004; 23: 800
  • 62 Olefin Metathesis: Theory and Practice . Grela K. Wiley-VCH; Weinheim: 2014
  • 63 For examples, see: Alexander JB, La DS, Cefalo DR, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1998; 120: 4041
    • 64a La DS, Alexander JB, Cefalo DR, Graf DD, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1998; 120: 9720
    • 64b Zhu SS, Cefalo DR, La DS, Jamieson JY, Davis WM, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1999; 121: 8251
    • 64c Cefalo DR, Kiely AF, Wuchrer M, Jamieson JY, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2001; 123: 3139
    • 64d Keily AF, Jernelius JA, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2002; 124: 2868
    • 64e Sattely ES, Cortez A, Moebius DC, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2005; 127: 8526
  • 65 Dolman SJ, Satterly ES, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 2002; 124: 6991
  • 66 Hartung J, Dornan PK, Grubbs RH. J. Am. Chem. Soc. 2014; 136: 13029
  • 67 Costabile C, Cavallo L. J. Am. Chem. Soc. 2004; 126: 9592
  • 68 Paradiso V, Bertolasi V, Costabile C, Caruso T, Dąbrowski M, Grela K, Grisi F. Organometallics 2017; 36: 3692
  • 69 Paradiso V, Bertolasi V, Costabile C, Grisi F. Dalton Trans. 2016; 45: 561
  • 70 Fu GC, Grubbs RH. J. Am. Chem. Soc. 1993; 115: 3800
  • 71 Zhou J, Rainier JD. Org. Lett. 2009; 11: 3774
    • 72a This work was first reported as Ludwig, J. R.; Gianino, J. B.; Schindler, C., Abstracts of Papers, 250th National Meeting of the American Chemical Society, Boston MA, Aug 16–20, 2015; American Chemical Society: Washington DC, 2015, ORGN-388. Nitrogen-containing substrates were disclosed as challenging for Lewis acid catalyzed carbonyl-olefin metathesis proceeding in 37% yield.
    • 72b Ludwig JR, Zimmerman PM, Gianino JB, Schindler CS. Nature (London) 2016; 533: 374
    • 72c Ludwig JR, Phan S, McAtee CC, Zimmerman PM, Devery JJ. III, Schindler CS. J. Am. Chem. Soc. 2017; 139: 10832
  • 73 Ma L, Li W, Xi H, Bai X, Ma E, Yan X, Li Z. Angew. Chem. Int. Ed. 2016; 55: 10410
  • 74 Groso EJ, Golonka AN, Harding RA, Alexander BW, Sodano TM, Schindler CS. ACS Catal. 2018; 8: 2006
  • 75 Groso E. J., Schindler C. S.; Org. Lett.; manuscript in revision.