Synthesis
DOI: 10.1055/s-0040-1706023
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

Recent Advances in Transition-Metal-Free (4+3)-Annulations

a  Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
,
Xavier Abel-Snape
a  Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
,
b  Ludwig-Maximilians-Universität München, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany
,
Mark Lautens
a  Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
› Author Affiliations
The authors would like to thank the Natural Sciences and Engineering Research Council (NSERC), Alphora Inc., and the University of Toronto for funding. H.L. thanks the NSERC Postgraduate Scholarships –Doctoral (PGS-D) program. X.A.-S. thanks the Ontario Graduate Scholarship (OGS) and the NSERC Canada Graduate Scholarships – Master’s (CGS-M) program. M.F.K. thanks the Deutscher Akademischer Austauschdienst (DAAD) (German Academic Exchange Service) and the Bayerischen Staat (State of Bavaria) for the PROSA LMU program.


Abstract

(4+3)-Annulations are incredibly versatile reactions which combine a 4-atom synthon and a 3-atom synthon to form both 7-membered carbocycles as well as heterocycles. We have previously reviewed transition-metal-catalyzed (4+3)-annulations. In this review, we will cover examples involving bases, NHCs, phosphines, Lewis and Brønsted acids as well as some rare examples of boronic acid catalysis and photocatalysis. In analogy to our previous review, we exclude annulations involving cyclic dienes like furan, pyrrole, cyclohexadiene or cyclopentadiene, as Chiu, Harmata, Fernándes and others have recently published reviews encompassing such substrates. We will however discuss the recent additions (2010–2020) to the literature on (4+3)-annulations involving other types of 4-atom-synthons.

1 Introduction

2 Bases

3 Annulations Using N-Heterocyclic Carbenes

3.1 N-Heterocyclic Carbenes (NHCs)

3.2 N-Heterocyclic Carbenes and Base Dual-Activation

4 Phosphines

5 Acids

5.1 Lewis Acids

5.2 Brønsted Acids

6 Boronic Acid Catalysis and Photocatalysis

7 Conclusion



Publication History

Received: 10 January 2021

Accepted after revision: 11 January 2021

Publication Date:
23 February 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hu F, Ng J, Chiu P. Synthesis 2019; 51: 1073
  • 2 Harmata M. Chem. Commun. 2010; 46: 8886
  • 3 Harmata M. Tetrahedron Lett. 1997; 53: 6235
  • 4 Fernández I, Mascareñas JL. Org. Biomol. Chem. 2012; 10: 699
  • 5 Yin Z, He Y, Chiu P. Chem. Soc. Rev. 2018; 47: 8881
  • 6 Selvaraj K, Chauhan S, Sandeep K, Swamy KC. K. Chem. Asian J. 2020; 15: 2380
  • 7 Lam H, Lautens M. Synthesis 2020; 52: 2427
  • 8 Feng J, Zhou M, Lin X, Lu A, Zhang X, Zhao M. Org. Lett. 2019; 21: 6245
  • 9 Jeffrey CS, Barnes KL, Eickhoff JA, Carson CR. J. Am. Chem. Soc. 2011; 133: 7688
  • 10 Jeffrey CS, Anumandla D, Carson CR. Org. Lett. 2012; 14: 5764
  • 11 Son EC, Lee J, Kim S.-G. Eur. J. Org. Chem. 2020; 3090
  • 12 Li W, Wei J, Jia Q, Du Z, Zhang K, Wang J. Chem. Eur. J. 2014; 20: 6592
  • 13 Hesping L, Biswas A, Daniliuc CG, Mück-Lichtenfeld C, Studer A. Chem. Sci. 2015; 6: 1252
  • 14 Gao Z.-H, Chen X.-Y, Cheng J.-T, Liao W.-L, Ye S. Chem. Commun. 2015; 51: 9328
  • 15 Zhou Y.-Y, Li J, Ling L, Liao S.-H, Sun X.-L, Li Y.-X, Wang L.-J, Tang Y. Angew. Chem. Int. Ed. 2013; 52: 1452
  • 16 Zhang L, Liu H, Qiao G, Hou Z, Liu Y, Xiao Y, Guo H. J. Am. Chem. Soc. 2015; 137: 4316
  • 17 Li Z, Yu H, Liu Y, Zhou L, Sun Z, Guo H. Adv. Synth. Catal. 2016; 358: 1880
  • 18 Xu J, Yuan S, Peng J, Miao M, Chen Z, Ren H. Org. Biomol. Chem. 2017; 15: 7513
  • 19 Hu X.-Q, Chen J.-R, Gao S, Feng B, Lu L.-Q, Xiao W.-J. Chem. Commun. 2013; 49: 7905
  • 20 Li Z, Li S, Kan T, Wang X, Xin X, Hou Y, Gong P. Adv. Synth. Catal. 2020; 362: 2626
  • 21 Zhao H.-W, Pang H.-L, Tian T, Li B, Chen X.-Q, Song X.-Q, Meng W, Yang Z, Liu Y.-Y, Zhao Y.-D. Adv. Synth. Catal. 2016; 358: 1826
  • 22 Zheng Y.-S, Tu L, Gao L.-M, Huang R, Feng T, Sun H, Wang W.-X, Li Z.-H, Liu J.-K. Org. Biomol. Chem. 2018; 16: 2639
  • 23 Zhang X, Pan Y, Liang P, Pang L, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2018; 360: 3015
  • 24 Guo Z, Jia H, Liu H, Wang Q, Huang J, Guo H. Org. Lett. 2018; 20: 2939
  • 25 Rolfe A, Samarakoon TB, Hanson PR. Org. Lett. 2010; 12: 1216
  • 26 Cleator E, Baxter CA, O’Hagan M, O’Riordan TJ. C, Sheen FJ, Stewart GW. Tetrahedron Lett. 2010; 51: 1079
  • 27 Albanese D, Landini D, Lupi V, Penso M. Ind. Eng. Chem. Res. 2003; 42: 680
  • 28 Albanese D, Landini D, Penso M. Chem. Commun. 1999; 2095
  • 29 Hu J, Liu Y, Gong Y. Adv. Synth. Catal. 2015; 357: 2781
  • 30 Cera G, Piscitelli S, Chiarucci M, Fabrizi G, Goggiamani A, Ramón RS, Nolan SP, Bandini M. Angew. Chem. Int. Ed. 2012; 51: 9891
  • 31 Lee HS, Kim SH, Kim TH, Kim JN. Tetrahedron Lett. 2008; 49: 1773
  • 32 England DB, Padwa A. J. Org. Chem. 2008; 73: 2792
  • 33 England DB, Padwa A. Org. Lett. 2007; 9: 3249
  • 34 Pérez-Serrano L, Casarrubios L, Domínguez G, Pérez-Castells J. Chem. Commun. 2001; 2602
  • 35 Pérez-Serrano L, Domínguez G, Pérez-Castells J. J. Org. Chem. 2004; 69: 5413
  • 36 Suryavanshi PA, Sridharan V, Menéndez JC. Org. Biomol. Chem. 2010; 8: 3426
  • 37 Kusama H, Suzuki Y, Takaya J, Iwasawa N. Org. Lett. 2006; 8: 895
  • 38 Zhang Y, Yu A, Jia J, Ma S, Li K, Wei Y, Meng X. Chem. Commun. 2017; 53: 10672
  • 39 Li J.-L, Dai Q.-S, Yang K.-C, Liu Y, Zhang X, Leng H.-J, Peng C, Huang W, Li Q.-Z. Org. Lett. 2018; 20: 7628
  • 40 Dinda BK, Jana AK, Mal D. Chem. Commun. 2012; 48: 3999
  • 41 Ouyang L, Qi C, He H, Peng Y, Xiong W, Ren Y, Jiang H. J. Org. Chem. 2016; 81: 912
  • 42 Chen L.-L, Zhang J.-W, Chen P, Zhang S, Yang W.-W, Fu J.-Y, Zhu J.-Y, Wang Y.-B. Org. Lett. 2019; 21: 5457
  • 43 Chen Q, Wang Y, Hua R. Molecules 2019; 24: 3773
  • 44 Jones DE, Harmata M. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Nishiwaki N. John Wiley & Sons; Hoboken: 2014
  • 45 Jones DE, Harmata M. In Metal-Catalyzed Cyclization Reactions 2, Science of Synthesis . Ma S, Gao S. Georg Thieme Verlag; Stuttgart: 2016: 319
  • 46 Dennis N, Ibrahim B, Katritzky AR. J. Chem. Soc., Perkin Trans. 1 1976; 2307
  • 47 Fu C, Lora N, Kirchhoefer PL, Lee DR, Altenhofer E, Barnes CL, Hungerford NL, Krenske EH, Harmata M. Angew. Chem. Int. Ed. 2017; 56: 14682
  • 48 Lv H, Jia W.-Q, Sun L.-H, Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
  • 49 Liang Z.-Q, Gao Z.-H, Jia W.-Q, Ye S. Chem. Eur. J. 2015; 21: 1868
  • 50 Liang Z.-Q, Yi L, Chen K.-Q, Ye S. J. Org. Chem. 2016; 81: 4841
  • 51 Chen K.-Q, Gao Z.-H, Ye S. Org. Chem. Front. 2019; 6: 405
  • 52 Xia F, Chen X.-Y, Ye S. J. Org. Chem. 2018; 83: 15178
  • 53 Fang C, Lu T, Zhu J, Sun K, Du D. Org. Lett. 2017; 19: 3470
  • 54 Fang C, Cao J, Sun K, Zhu J, Lu T, Du D. Chem. Eur. J. 2018; 24: 2103
  • 55 Fukata Y, Asano K, Matsubara S. J. Am. Chem. Soc. 2015; 137: 5320
  • 56 Li W, Yuan H, Liu Z, Zhang Z, Cheng Y, Li P. Adv. Synth. Catal. 2018; 360: 2460
  • 57 Wang M, Huang Z, Xu J, Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
  • 58 Izquierdo J, Orue A, Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
  • 59 Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
  • 60 Guo C, Sahoo B, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2014; 136: 17402
  • 61 Zhu S.-Y, Zhang Y, Wang W, Hui X.-P. Org. Lett. 2017; 19: 5380
  • 62 Liu D, Hu Z, Zhang Y, Gong M, Fu Z, Huang W. Chem. Eur. J. 2019; 25: 11223
  • 63 Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
  • 64 Wei Y, Shi M. In Organocatalytic Cycloadditions for Synthesis of Carbo- and Heterocycles, 1st ed. Shi M, Wei Y, Zhao M.-X, Zhang J. Wiley-VCH; Weinheim: 2018: 141
  • 65 Na R, Jing C, Xu Q, Jiang H, Wu X, Shi J, Zhong J, Wang M, Benitez D, Tkatchouk E, Goddard WA, Guo H, Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
  • 66 Jing C, Na R, Wang B, Liu H, Zhang L, Liu J, Wang M, Zhong J, Kwon O, Guo H. Adv. Synth. Catal. 2012; 354: 1023
  • 67 Yuan C, Zhou L, Xia M, Sun Z, Wang D, Guo H. Org. Lett. 2016; 18: 5644
  • 68 Kumar K, Kapoor R, Kapur A, Ishar MP. S. Org. Lett. 2000; 2: 2023
  • 69 Zheng S, Lu X. Org. Lett. 2009; 11: 3978
  • 70 Hillman ME. D, Baylis AB. (Celanese Corp, USA) US3743669A 1973
  • 71 Chen J, Huang Y. Org. Lett. 2017; 19: 5609
  • 72 Chen J, Yin Z, Huang Y. Org. Lett. 2019; 21: 7060
  • 73 Zhan G, Shi M.-L, He Q, Du W, Chen Y.-C. Org. Lett. 2015; 17: 4750
  • 74 Ivanov KL, Melnikov MY, Budynina EM. Org. Lett. 2019; 21: 4464
  • 75 Lewis Acid Reagents: A Practical Approach . Yamamoto H. Oxford University Press; Oxford: 1999
  • 76 Lewis Acids in Organic Synthesis . Yamamoto H. Wiley-VCH; Weinheim: 2000
  • 77 Pathipati SR, Eriksson L, Selander N. Chem. Commun. 2017; 53: 11353
  • 78 Han X, Li H, Hughes RP, Wu J. Angew. Chem. Int. Ed. 2012; 51: 10390
  • 79 Wani IA, Bhattacharyya A, Sayyad M, Ghorai MK. Org. Biomol. Chem. 2018; 16: 2910
  • 80 Song B, Li L.-H, Song X.-R, Qiu Y.-F, Zhong M.-J, Zhou P.-X, Liang Y.-M. Chem. Eur. J. 2014; 20: 5910
  • 81 Hoffmann R, Stohrer WD. J. Am. Chem. Soc. 1971; 93: 6941
  • 82 Dewar MJ. S, Wade LE. J. Am. Chem. Soc. 1977; 99: 4417
  • 83 Han Y.-P, Song X.-R, Qiu Y.-F, Zhang H.-R, Li L.-H, Jin D.-P, Sun X.-Q, Liu X.-Y, Liang Y.-M. Org. Lett. 2016; 18: 940
  • 84 Shu C, Wang Y.-H, Zhou B, Li X.-L, Ping Y.-F, Lu X, Ye L.-W. J. Am. Chem. Soc. 2015; 137: 9567
  • 85 Siyang HX, Ji XY, Wu XR, Wu XY, Liu PN. Org. Lett. 2015; 17: 5220
  • 86 Stevens AC, Palmer C, Pagenkopf BL. Org. Lett. 2011; 13: 1528
  • 87 Zhang C, Tian J, Ren J, Wang Z. Chem. Eur. J. 2017; 23: 1231
  • 88 Garve LK. B, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 9226
  • 89 Augustin AU, Merz JL, Jones PG, Mlostoń G, Werz DB. Org. Lett. 2019; 21: 9405
  • 90 Morgan TD. R, LeFort FM, Li Z, Marx VM, Boyd RJ, Burnell DJ. Eur. J. Org. Chem. 2015; 2952
  • 91 Nazarov IN, Zaretskaya I. Izv. Akad. Nauk. SSSR Ser. Khim. 1941; 211
  • 92 Habermas KL, Denmark SE, Jones TK. Org. React. 1994; 45: 1
  • 93 Winne JM, Catak S, Waroquier M, Van Speybroeck V. Angew. Chem. Int. Ed. 2011; 50: 11990
  • 94 Laplace DR, Verbraeken B, Van Hecke K, Winne JM. Chem. Eur. J. 2014; 20: 253
  • 95 Zong Y, Wang W, Xu T. Mar. Drugs 2018; 16: 115
  • 96 Marion F, Williams DE, Patrick BO, Hollander I, Mallon R, Kim SC, Roll DM, Feldberg L, Van Soest R, Andersen RJ. Org. Lett. 2006; 8: 321
  • 97 Xu J, Rawal VH. J. Am. Chem. Soc. 2019; 141: 4820
  • 98 Hullaert J, Denoo B, Christiaens M, Callebaut B, Winne JM. Synlett 2017; 28: 2345
  • 99 Pattenden G, Winne JM. Tetrahedron Lett. 2009; 50: 7310
  • 100 Christiaens M, Hullaert J, Van Hecke K, Laplace D, Winne JM. Chem. Eur. J. 2018; 24: 13783
  • 101 Winne J, Laplace D. Synlett 2015; 26: 467
  • 102 Callebaut B, Hullaert J, Hecke KV, Winne JM. Org. Lett. 2019; 21: 310
  • 103 Zhang J, Li L, Wang Y, Wang W, Xue J, Li Y. Org. Lett. 2012; 14: 4528
  • 104 George JH, Baldwin JE, Adlington RM. Org. Lett. 2010; 12: 2394
  • 105 Zhang H.-H, Zhu Z.-Q, Fan T, Liang J, Shi F. Adv. Synth. Catal. 2016; 358: 1259
  • 106 Lam H, Qureshi Z, Wegmann M, Lautens M. Angew. Chem. Int. Ed. 2018; 57: 16185
  • 107 Sun M, Ma C, Zhou SJ, Lou SF, Xiao J, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 8703
  • 108 Gelis C, Levitre G, Merad J, Retailleau P, Neuville L, Masson G. Angew. Chem. Int. Ed. 2018; 57: 12121
  • 109 Mei GJ, Zhu ZQ, Zhao JJ, Bian CY, Chen J, Chen RW, Shi F. Chem. Commun. 2017; 53: 2768
  • 110 Li C, Wang CS, Li TZ, Mei GJ, Shi F. Org. Lett. 2019; 21: 598
  • 111 Cao K.-S, Bian H.-X, Zheng W.-H. Org. Biomol. Chem. 2015; 13: 6449
  • 112 He S, Hsung RP, Presser WR, Ma Z.-X, Haugen BJ. Org. Lett. 2014; 16: 2180
  • 113 Zhang Z, Li L, Wang Y, Wang W, Xue J, Li Y. Org. Lett. 2012; 14: 4528
  • 114 Chen H, He Y, Zhou L. Org. Chem. Front. 2018; 5: 3240
  • 115 Li L, Xiao T, Chen H, Zhou L. Chem. Eur. J. 2017; 23: 2249