Synthesis 2020; 52(23): 3511-3529
DOI: 10.1055/s-0040-1707212
review
© Georg Thieme Verlag Stuttgart · New York

Recent Applications of Continuous Flow in Homogeneous Palladium Catalysis

Martin Markovič
a  Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia   eMail: peter.koos@stuba.sk
b  Georganics Ltd., Koreničova 1, 811 03 Bratislava, Slovakia
,
Pavol Lopatka
b  Georganics Ltd., Koreničova 1, 811 03 Bratislava, Slovakia
,
Tibor Gracza
a  Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia   eMail: peter.koos@stuba.sk
,
a  Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia   eMail: peter.koos@stuba.sk
b  Georganics Ltd., Koreničova 1, 811 03 Bratislava, Slovakia
› Institutsangaben
We would like to acknowledge the funding and support from the Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (VEGA) (Slovak Grant Agencies) (Grant no. 1/0552/18 and 1/0766/20).
Weitere Informationen

Publikationsverlauf

Received: 20. Mai 2020

Accepted after revision: 22. Juni 2020

Publikationsdatum:
03. August 2020 (online)


Abstract

Considerable advances have been made using continuous flow chemistry as an enabling tool in organic synthesis. Consequently, the number of articles reporting continuous flow methods has increased significantly in recent years. This review covers the progress achieved in homogeneous palladium catalysis using continuous flow conditions over the last five years, including C–C/C–N cross-coupling reactions, carbonylations and reductive/oxidative transformations.

1 Introduction

2 C–C Cross-Coupling Reactions

3 C–N Coupling Reactions

4 Carbonylation Reactions

5 Miscellaneous Reactions

6 Key to Schematic Symbols

7 Conclusion

 
  • References

    • 1a Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
    • 1b Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM. Angew. Chem. Int. Ed. 2015; 54: 3449
    • 1c Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 2a Kobayashi S. Chem. Asian J. 2016; 11: 425
    • 2b Lummis JA. M, Morse P, Beingessner RL, Jamison TF. Chem. Rec. 2017; 17: 1
    • 2c Britton J, Raston CL. Chem. Soc. Rev. 2017; 46: 1250
    • 2d Wegner J, Ceylan S, Kirschning A. Chem. Commun. 2011; 47: 4583
  • 3 Hartman RL. Org. Process Res. Dev. 2012; 16: 870
  • 4 Lapkin A, Loponov K, Tomaiuolo G, Guido S. In Sustainable Flow Chemistry: Methods and Applications . Vaccaro L. Wiley-VCH; Weinheim: 2017: 277
    • 6a Noël T, Buchwald SL. Chem. Soc. Rev. 2011; 40: 5010
    • 6b Bottecchia C, Noël T. In Science of Synthesis, Vol. 1. Jamison TF, Koch G. Thieme; Stuttgart: 2018: 313
  • 7 Roesner S, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 10463
  • 8 Becker MR, Knochel P. Org. Lett. 2016; 18: 1462
  • 9 Kandasamy M, Huang Y.-H, Ganesan B, Senadi GC, Lin W.-Y. Eur. J. Org. Chem. 2019; 4349
  • 10 Cortés-Borda D, Kutonova KV, Jamet C, Trusova ME, Zammattio F, Truchet C, Rodriguez-Zubiri M, Felpin F.-X. Org. Process Res. Dev. 2016; 20: 1979
  • 11 Reizman BJ, Wang Y.-M, Buchwald SL, Jensen KF. React. Chem. Eng. 2016; 1: 658
  • 12 Teci M, Tilley M, McGuire MA, Organ MG. Chem. Eur. J. 2016; 22: 17407
  • 13 Bai L, Fu Y, Cheng Y. J. Flow Chem. 2017; 7: 52
  • 14 Linghu X, Wong N, Jost V, Fantasia S, Sowell CG, Gosselin F. Org. Process Res. Dev. 2017; 21: 1320
  • 15 Znidar D, Hone CA, Inglesby P, Boyd A, Kappe CO. Org. Process Res. Dev. 2017; 21: 878
  • 16 Sharma UK, Gemoets HP. L, Schröder F, Noël T, Van der Eycken EV. ACS Catal. 2017; 7: 3818
    • 17a Sambiagio C, Noël T. Trends Chem. 2020; 2: 92
    • 17b Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
  • 18 Abdiaj I, Huck L, Mateo JM, de la Hoz A, Gomez MV, Díaz-Ortiz A, Alcázar J. Angew. Chem. Int. Ed. 2018; 57: 13231
  • 19 Berton M, Huck L, Alcázar J. Nat. Protoc. 2018; 13: 324
  • 20 Böck K, Feil JE, Karaghiosoff K, Koszinowski K. Chem. Eur. J. 2015; 21: 5548
  • 21 Xue F, Deng H, Xue C, Mohamed DK. B, Yuanting T, Wu J. Chem. Sci. 2018; 8: 3623
  • 22 Casnati A, Gemoets HP. L, Motti E, Ca ND, Noël T. Chem. Eur. J. 2018; 24: 14709
  • 23 Izawa Y, Stahl SS. Adv. Synth. Catal. 2010; 352: 3223
  • 24 Erdmann N, Su Y, Bosmans B, Hessel V, Noël T. Org. Process Res. Dev. 2016; 20: 831
  • 25 Park JH, Park CY, Kim MJ, Kim MU, Kim YJ, Kim G.-H, Park CP. Org. Process Res. Dev. 2015; 19: 812
  • 26 Kitiching MO, Dixon OE, Baumann M, Baxendale IR. Eur. J. Org. Chem. 2017; 6540
    • 27a Naber JR, Buchwald SL. Angew. Chem. Int. Ed. 2010; 49: 9469
    • 27b Noël T, Naber JR, Hartman RL, McMullen JP, Jensen KF, Buchwald SL. Chem. Sci. 2011; 2: 287
    • 28a Hopkin MD, Baxendale IR, Ley SV. Chem. Commun. 2010; 46: 2450
    • 28b Deadman BJ, Battilocchio C, Sliwinski E, Ley SV. Green Chem. 2013; 15: 2050
    • 28c Tundel RE, Anderson KW, Buchwald SL. J. Org. Chem. 2006; 71: 430
  • 29 Kashani SE, Jessiman JE, Newman SG. Org. Process Res. Dev. 2020; 24 DOI: in press; 10.1021/acs.oprd.0c00018.
  • 30 Fu WC, Jamison TF. Org. Lett. 2019; 21: 6112
  • 31 Yang JC, Niu D, Karsten BP, Lima F, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 2531
  • 32 Yaseneva P, Hodgson P, Zakrzewski J, Falß S, Meadows RE, Lapkin AA. React. Chem. Eng. 2016; 1: 229
  • 33 Falß S, Tomaiuolo G, Perazzo A, Hodgson P, Yaseneva P, Zakrzewski J, Guido S, Lapkin AA, Woodward R, Meadows RE. Org. Process Res. Dev. 2016; 20: 558
    • 34a He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 34b Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 34c Santoro S, Ferlin F, Ackermann L, Vaccaro L. Chem. Soc. Rev. 2019; 48: 2767
    • 34d Govaerts S, Nyuchev A, Noël T. J. Flow Chem. 2020; 10: 13
  • 35 Zakrzewski J, Smalley AP, Kabeshov MA, Gaunt MJ, Lapkin AA. Angew. Chem. Int. Ed. 2016; 55: 8878
  • 36 Smalley AP, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 10632
    • 37a Wu L, Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6310
    • 37b Gautam P, Bhanage BM. Catal. Sci. Tech. 2015; 5: 4663
    • 37c Konishi H, Manabe K. Tetrahedron Lett. 2019; 60: 151147
    • 38a Koos P, Gross U, Polyzos A, O’Brien M, Baxendale IR, Ley SV. Org. Biomol. Chem. 2011; 9: 6903
    • 38b Akinaga H, Masaoka N, Takagi K, Ryu I, Fukuyama T. Chem. Lett. 2014; 43: 1456
    • 38c Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
    • 38d Mallia CJ, Baxendale IR. Org. Process Res. Dev. 2016; 20: 327
  • 39 Mallia CJ, Walter GC, Baxendale IR. Beilstein J. Org. Chem. 2016; 12: 1503
  • 40 Hansen SV. F, Wilson ZE, Ulven T, Ley SV. React. Chem. Eng. 2016; 1: 280
  • 41 Mata A, Hone CA, Gutmann B, Moens L, Kappe CO. ChemCatChem 2019; 11: 997
  • 42 Hone CA, Lopatka P, Munday R, O’Kearney-McMullan A, Kappe CO. ChemSusChem 2019; 12: 326
  • 43 Moore JS, Smith CD, Jensen KF. React. Chem. Eng. 2016; 1: 272
  • 44 Chen Y, Hone CA, Gutmann B, Kappe CO. Org. Process Res. Dev. 2017; 21: 1080
  • 45 Lopatka P, Markovič M, Koóš P, Ley SV, Gracza T. J. Org. Chem. 2019; 84: 14394
  • 46 Blackham EE, Knowles JP, Burgess J, Booker-Milburn KI. Chem. Sci. 2016; 7: 2302
  • 47 Bouchard A, Kairouz V, Manneveau M, Xiong H.-Y, Besset T, Pannecoucke X, Lebel H. J. Flow Chem. 2019; 9: 9
  • 48 Hone CA, O’Kearney-McMullan A, Munday R, Kappe CO. ChemCatChem 2017; 9: 3298
  • 49 Gutmann B, Weigl U, Cox DP, Kappe CO. Chem. Eur. J. 2016; 22: 10393
  • 50 Gutmann B, Elsner P, Cox DP, Weigl U, Roberge DM, Kappe CO. ACS Sustainable Chem. Eng. 2016; 4: 6048
  • 51 Glotz G, Gutmann B, Hanselmann P, Kulesza A, Roberge D, Kappe CO. RSC Adv. 2017; 7: 10469
  • 52 Koolman HF, Kantor S, Bogdan AR, Wang Y, Pan JY, Djuric SW. Org. Biomol. Chem. 2016; 14: 6591
  • 53 Skillinghaug B, Rydfjord J, Sävmarker J, Larhed M. Org. Process Res. Dev. 2016; 20: 2005