Synthesis 2021; 53(01): 51-64
DOI: 10.1055/s-0040-1707234
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Copper-Catalyzed Radical C–H Bond Activation Using N–F Reagents

José María Muñoz-Molina
,
Tomás R. Belderrain
,
Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain   Email: perez@ciqso.uhu.es
› Author Affiliations
We thank Ministerio de Economía y Competitividad (MINECO) (No. CTQ2017-82893-C2-1-R) and Universidad de Huelva (No. PO FEDER 2014-2020 UHU-1254043) for grants.
Further Information

Publication History

Received: 10 June 2020

Accepted after revision: 07 July 2020

Publication Date:
25 August 2020 (online)


Abstract

This Short Review is aimed at giving an update in the area of copper-catalyzed C–H functionalization involving nitrogen-centered radicals generated from substrates containing N–F bonds. These processes include intermolecular Csp3–H bond functionalization, remote Csp3–H bond functionalization via intramolecular hydrogen atom transfer (HAT), and Csp2–H bond functionalization, which might be of potential use in industrial applications in the future.

1 Introduction

2 Intermolecular Csp3–H Functionalization

3 Remote Csp3–H Functionalization

4 Csp2–H Functionalization

5 Conclusion

 
  • References

    • 1a Romero KJ, Galliher MS, Pratt DA, Stephenson CR. J. Chem. Soc. Rev. 2018; 47: 7851
    • 1b Fischer H. Chem. Rev. 2001; 101: 3581
    • 1c Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74
    • 1d Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237
    • 1e Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
    • 2a Togo H. Advanced Free Radical Reactions for Organic Synthesis. Elsevier; Amsterdam: 2004
    • 2b Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
    • 2c Walton JC. Top. Curr. Chem. 2006; 264: 163
    • 2d Tang S, Liu K, Liu C, Lei A. Chem. Soc. Rev. 2015; 44: 1070
    • 2e Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 3a Iqbal J, Bhatia B, Nayyar NK. Chem. Rev. 1994; 94: 519
    • 3b Liu C, Liu D, Lei A. Acc. Chem. Res. 2014; 47: 3459
    • 3c Pintauer T. Eur. J. Inorg. Chem. 2010; 2449
    • 3d Muñoz-Molina JM, Belderrain TR, Pérez PJ. Eur. J. Inorg. Chem. 2011; 3155
    • 3e Schiesser CH, Wille U, Matsubara H, Ryu I. Acc. Chem. Res. 2007; 40: 303
    • 3f Li ZL, Fang GC, Gu QS, Liu XY. Chem. Soc. Rev. 2020; 49: 32
    • 3g Gu QS, Li ZL, Liu XY. Acc. Chem. Res. 2020; 53: 170
  • 4 Yang JD, Wang Y, Xue XS, Cheng JP. J. Org. Chem. 2017; 82: 4129
    • 5a Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2004; 44: 192
    • 5b Singh RP, Shreeve JM. Acc. Chem. Res. 2004; 37: 31
  • 6 Taylor SD, Kotoris GC, Hum G. Tetrahedron 1999; 55: 12431
  • 7 Differding E, Ofner H. Synlett 1991; 187
  • 8 Kiselyov AS. Chem. Soc. Rev. 2005; 34: 1031
    • 9a Lal GS, Pez GP, Syvret RG. Chem. Rev. 1996; 96: 1737
    • 9b Meyer D, Jangra H, Walther F, Zipse H, Renaud P. Nat. Commun. 2018; 9: 1
    • 9c Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3216
    • 9d Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 9e Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 9f Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
    • 9g Champagne PA, Desroches J, Hamel JD, Vandamme M, Paquin JF. Chem. Rev. 2015; 115: 9073
    • 9h Szpera R, Moseley DF. J, Smith LB, Sterling AJ, Gouverneur V. Angew. Chem. Int. Ed. 2019; 58: 14824
    • 10a Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 10b Jiao J, Murakami K, Itami K. ACS Catal. 2016; 6: 610
    • 10c Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
    • 10d Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
  • 11 Bloom S, Pitts CR, Miller DC, Haselton N, Holl MG, Urheim E, Lectka T. Angew. Chem. Int. Ed. 2012; 51: 10580
  • 12 Pitts CR, Bloom S, Woltornist R, Auvenshine DJ, Ryzhkov LR, Siegler MA, Lectka T. J. Am. Chem. Soc. 2014; 136: 9780
  • 13 Ni Z, Zhang Q, Xiong T, Zheng Y, Li Y, Zhang H, Zhang J, Liu Q. Angew. Chem. Int. Ed. 2012; 51: 1244
  • 14 Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014
  • 15 Li J, Zhang Z, Wu L, Zhang W, Chen P, Lin Z, Liu G. Nature 2019; 574: 516
  • 16 Zhang W, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 7709
  • 17 Zhang W, Wu L, Chen P, Liu G. Angew. Chem. Int. Ed. 2019; 58: 6425
  • 18 Zhou J, Zou Y, Zhou P, Chen Z, Li J. Org. Chem. Front. 2019; 6: 1594
  • 19 Xiao H, Liu Z, Shen H, Zhang B, Zhu L, Li C. Chem 2019; 5: 940
  • 20 Michaudel Q, Thevenet D, Baran PS. J. Am. Chem. Soc. 2012; 134: 2547
  • 21 Sathyamoorthi S, Lai Y.-H, Bain RM, Zare RN. J. Org. Chem. 2018; 83: 5681
  • 22 Hu H, Chen SJ, Mandal M, Pratik SM, Buss JA, Krska SW, Cramer CJ, Stahl SS. Nat. Catal. 2020; 3: 358
  • 23 Zhou J, Jin C, Li X, Su W. RSC Adv. 2015; 5: 7232
  • 24 Guo Z, Jin C, Zhou J, Su W. RSC Adv. 2016; 6: 79016
    • 25a Groendyke BJ, Abusalim DI, Cook SP. J. Am. Chem. Soc. 2016; 138: 12771
    • 25b Bafaluy D, Muñoz-Molina JM, Funes-Ardoiz I, Herold S, de Aguirre AJ, Zhang H, Maseras F, Belderrain TR, Pérez PJ, Muñiz K. Angew. Chem. Int. Ed. 2019; 58: 8912
  • 26 Li Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 13288
  • 27 Zhang Z, Stateman LM, Nagib DA. Chem. Sci. 2019; 10: 1207
  • 28 Liu Z, Xiao H, Zhang B, Shen H, Zhu L, Li C. Angew. Chem. Int. Ed. 2019; 58: 2510
  • 29 Yin Z, Zhang Y, Zhang S, Wu XF. Adv. Synth. Catal. 2019; 361: 5478
  • 30 Wang CY, Qin ZY, Huang YL, Hou YM, Jin RX, Li C, Wang XS. Org. Lett. 2020; 22: 4006
  • 31 Zhang H, Zhou Y, Tian P, Jiang C. Org. Lett. 2019; 21: 1921
  • 32 Zhang Z, Zhang X, Nagib DA. Chem 2019; 5: 3127
  • 33 Modak A, Pinter EN, Cook SP. J. Am. Chem. Soc. 2019; 141: 18405
  • 34 Qin Y, Han Y, Tang Y, Wei J, Yang M. Chem. Sci. 2020; 11: 1276
  • 35 Min QQ, Yang JW, Pang MJ, Ao GZ, Liu F. Org. Lett. 2020; 22: 2828
  • 36 Zhang H, Tian P, Ma L, Zhou Y, Jiang C, Lin X, Xiao X. Org. Lett. 2020; 22: 997
  • 37 Yin Z, Zhang Y, Zhang S, Wu XF. J. Catal. 2019; 377: 507
    • 38a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 38b Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
    • 38c Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 38d Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
    • 38e Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753
    • 38f Dorel R, Grugel CP, Haydl AM. Angew. Chem. Int. Ed. 2019; 58: 17118
    • 39a Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
    • 39b Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450
    • 39c Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 39d Surry DS, Buchwald SL. Chem. Sci. 2010; 1: 13
    • 39e Qiao JX, Lam PY. S. Synthesis 2011; 829
  • 40 Guaand Q, Vessally E. RSC Adv. 2020; 10: 16756
  • 41 Wang S, Ni Z, Huang X, Wang J, Pan Y. Org. Lett. 2014; 16: 5648
  • 42 Haines BE, Kawakami T, Kuwata K, Murakami K, Itami K, Musaev DG. Chem. Sci. 2017; 8: 988
  • 43 Yin Y, Xie J, Huang FQ, Qi LW, Zhang B. Adv. Synth. Catal. 2017; 359: 1037
  • 44 Lu S, Tian LL, Cui TW, Zhu YS, Zhu X, Hao XQ, Song MP. J. Org. Chem. 2018; 83: 13991
  • 45 Luo SS, Su LJ, Jiang Y, Li XB, Li ZH, Sun H, Liu JK. Synlett 2018; 29: 1525
  • 46 Zhang Y, Wen C, Zhang C, Li J. Chem. Res. Chin. Univ. 2018; 34: 552
  • 47 Gao DW, Vinogradova EV, Nimmagadda SK, Medina JM, Xiao Y, Suciu RM, Cravatt BF, Engle KM. J. Am. Chem. Soc. 2018; 140: 8069
  • 48 Zhang J, Shi D, Zhang H, Xu Z, Bao H, Jin H, Liu Y. Tetrahedron 2017; 73: 154
  • 49 Bao H, Hu X, Zhang J, Liu Y. Tetrahedron 2019; 75: 130533
  • 50 Zhang G, Xiong T, Wang Z, Xu G, Wang X, Zhang Q. Angew. Chem. Int. Ed. 2015; 54: 12649