Synthesis
DOI: 10.1055/s-0042-1751518
review

Photoinduced Ligand-to-Metal Charge Transfer in Base-Metal Catalysis

Sean M. Treacy
,
The authors thank the National Institute of General Medical Sciences (NIGMS) (GM125206) for support.


Abstract

The absorption of light by photosensitizers has been shown to offer novel reactive pathways through electronic excited state intermediates, complementing ground-state mechanisms. Such strategies have been applied in both photocatalysis and photoredox catalysis, driven by generating reactive intermediates from their long-lived excited states. One developing area is photoinduced ligand-to-metal charge transfer (LMCT) catalysis, in which coordination of a ligand to a metal center and subsequent excitation with light results in the formation of a reactive radical and a reduced metal center. This mini review concerns the foundations and recent developments on ligand-to-metal charge transfer in transition-metal catalysis, focusing on the organic transformations made possible through this mechanism.

1 Introduction

2 Iron

3 Cobalt

4 Nickel

5 Copper

6 Future Outlook and Conclusion



Publication History

Received: 10 August 2023

Accepted after revision: 21 September 2023

Article published online:
21 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Orgel LE. Q. Rev. Chem. Soc. 1954; 8: 422
  • 2 Endicott JF. Isr. J. Chem. 1970; 8: 209
  • 3 Balzani V, Moggi L. Coord. Chem. Rev. 1990; 97: 313
  • 4 Gaur K, Cruz YM, Santiago Espinoza JA, Morales Rueda CA, Loza-Rosas SA, Fernández-Vega L, Benjamín-Rivera JA, Álvarez A, Tinoco AD. J. Chem. Educ. 2020; 97: 1970
  • 5 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 6 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 7 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
  • 8 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
  • 9 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 10 Zhang Y, Lee TS, Petersen JL, Milsmann C. J. Am. Chem. Soc. 2018; 140: 5934
  • 11 De Groot LH. M, Ilic A, Schwarz J, Wärnmark K. J. Am. Chem. Soc. 2023; 145: 9369
  • 12 Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
  • 13 Juliá F. ChemCatChem 2022; 14: e202200916
  • 14 Reichle A, Reiser O. Chem. Sci. 2023; 14: 4449
  • 15 Parker CA, Bowen EJ. Proc. R. Soc. London, Ser. A 1953; 220: 104
  • 16 Hatchard CG, Parker CA, Bowen EJ. Proc. R. Soc. London, Ser. A 1956; 235: 518
  • 17 Inoue H, Tamaki K, Komakine N, Imoto E. Bull. Chem. Soc. Jpn. 1966; 39: 1577
  • 18 Inoue H, Tamaki K, Komakine N, Imoto E. Bull. Chem. Soc. Jpn. 1967; 40: 875
  • 19 Inoue H, Komakine N, Imoto E. Bull. Chem. Soc. Jpn. 1968; 41: 2726
  • 20 Inoue H, Izumi M, Imoto E. Chem. Lett. 1973; 2: 571
  • 21 Sugimori A, Yamada T. Bull. Chem. Soc. Jpn. 1986; 59: 3911
  • 22 Barbier M. Helv. Chim. Acta 1984; 67: 866
  • 23 Murayama E, Kohda A, Sato T. Chem. Lett. 1978; 7: 161
  • 24 Kohda A, Ueda K, Sato T. J. Org. Chem. 1981; 46: 509
  • 25 Sato T, Oikawa T, Kobayashi K. J. Org. Chem. 1985; 50: 1646
  • 26 Shulpin GB, Kats MM. React. Kinet. Catal. Lett. 1990; 41: 239
  • 27 Shul’pin GB, Nizova GV, Kozlov YN. New J. Chem. 1996; 20: 1243
  • 28 Shul’pin GB, Kats MM. Pet. Chem. 1991; 31: 647
  • 29 Takaki K, Yamamoto J, Matsushita Y, Morii H, Shishido T, Takehira K. Bull. Chem. Soc. Jpn. 2003; 76: 393
  • 30 Takaki K, Yamamoto J, Komeyama K, Kawabata T, Takehira K. Bull. Chem. Soc. Jpn. 2004; 77: 2251
  • 31 Wu W, He X, Fu Z, Liu Y, Wang Y, Gong X, Deng X, Wu H, Zou Y, Yu N, Yin D. J. Catal. 2012; 286: 6
  • 32 Wu W, Fu Z, Wen X, Wang Y, Zou S, Meng Y, Liu Y, Kirk SR, Yin D. Appl. Catal. Gen. 2014; 469: 483
  • 33 Li Z, Wang X, Xia S, Jin J. Org. Lett. 2019; 21: 4259
  • 34 Feng G, Wang X, Jin J. Eur. J. Org. Chem. 2019; 6728
  • 35 Luo Z, Meng Y, Gong X, Wu J, Zhang Y, Ye L, Zhu C. Chin. J. Chem. 2020; 38: 173
  • 36 Kang YC, Treacy SM, Rovis T. ACS Catal. 2021; 11: 7442
  • 37 Jin Y, Wang L, Zhang Q, Zhang Y, Liao Q, Duan C. Green. Chem. 2021; 23: 9406
  • 38 Zhang Q, Liu S, Lei J, Zhang Y, Meng C, Duan C, Jin Y. Org. Lett. 2022; 24: 1901
  • 39 Kang YC, Treacy SM, Rovis T. Synlett 2021; 32: 1767
  • 40 Guo J.-J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319
  • 41 Hu A, Guo J.-J, Pan H, Tang H, Gao Z, Zuo Z. J. Am. Chem. Soc. 2018; 140: 1612
  • 42 Hu A, Guo J.-J, Pan H, Zuo Z. Science 2018; 361: 668
  • 43 An Q, Wang Z, Chen Y, Wang X, Zhang K, Pan H, Liu W, Zuo Z. J. Am. Chem. Soc. 2020; 142: 6216
  • 44 Yang Q, Wang Y.-H, Qiao Y, Gau M, Carroll PJ, Walsh PJ, Schelter EJ. Science 2021; 372: 847
  • 45 An Q, Xing Y.-Y, Pu R, Jia M, Chen Y, Hu A, Zhang S.-Q, Yu N, Du J, Zhang Y, Chen J, Liu W, Hong X, Zuo Z. J. Am. Chem. Soc. 2023; 145: 359
  • 46 Xue T, Zhang Z, Zeng R. Org. Lett. 2022; 24: 977
  • 47 Liu W, Wu Q, Wang M, Huang Y, Hu P. Org. Lett. 2021; 23: 8413
  • 48 Xiong N, Li Y, Zeng R. Org. Lett. 2021; 23: 8968
  • 49 Gonzalez MI, Gygi D, Qin Y, Zhu Q, Johnson EJ, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2022; 144: 1464
  • 50 Oh S, Stache EE. J. Am. Chem. Soc. 2022; 144: 5745
  • 51 Niu B, Sachidanandan K, Cooke MV, Casey TE, Laulhé S. Org. Lett. 2022; 24: 4524
  • 52 Xiong N, Dong Y, Xu B, Li Y, Zeng R. Org. Lett. 2022; 24: 4766
  • 53 Ni H, Li C, Shi X, Hu X, Mao H. J. Org. Chem. 2022; 87: 9797
  • 54 Zhang Y, Qian J, Wang M, Huang Y, Hu P. Org. Lett. 2022; 24: 5972
  • 55 Dai Z.-Y, Zhang S.-Q, Hong X, Wang P.-S, Gong L.-Z. Chem. Catal. 2022; 2: 1211
  • 56 Xiong N, Li Y, Zeng R. ACS Catal. 2023; 13: 1678
  • 57 Chinchole A, Henriquez MA, Cortes-Arriagada D, Cabrera AR, Reiser O. ACS Catal. 2022; 12: 13549
  • 58 Lutovsky GA, Gockel SN, Bundesmann MW, Bagley SW, Yoon TP. Chem 2023; 9: 1610
  • 59 Hoffman MZ, Kantrowitz ER, Endicott JF. J. Phys. Chem. 1971; 75: 1914
  • 60 Roche TS, Endicott JF. Inorg. Chem. 1974; 13: 1575
  • 61 Giedyk M, Goliszewska K, Gryko D. Chem. Soc. Rev. 2015; 44: 3391
  • 62 Wdowik T, Gryko D. ACS Catal. 2022; 12: 6517
  • 63 Giese B, Hartung J, He J, Hüter O, Koch A. Angew. Chem., Int. Ed. Engl. 1989; 28: 325
  • 64 Weiss ME, Kreis LM, Lauber A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11125
  • 65 Kreis LM, Krautwald S, Pfeiffer N, Martin RE, Carreira EM. Org. Lett. 2013; 15: 1634
  • 66 Prina Cerai G, Morandi B. Chem. Commun. 2016; 52: 9769
  • 67 Ociepa M, Baka O, Narodowiec J, Gryko D. Adv. Synth. Catal. 2017; 359: 3560
  • 68 Komeyama K, Michiyuki T, Teshima Y, Osaka I. RSC Adv. 2021; 11: 3539
  • 69 Ociepa M, Wierzba AJ, Turkowska J, Gryko D. J. Am. Chem. Soc. 2020; 142: 5355
  • 70 Potrząsaj A, Musiejuk M, Chaładaj W, Giedyk M, Gryko D. J. Am. Chem. Soc. 2021; 143: 9368
  • 71 Potrząsaj A, Ociepa M, Chaładaj W, Gryko D. Org. Lett. 2022; 24: 2469
  • 72 Ruhl KE, Rovis T. J. Am. Chem. Soc. 2016; 138: 15527
  • 73 Ravetz BD, Wang JY, Ruhl KE, Rovis T. ACS Catal. 2019; 9: 200
  • 74 West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
  • 75 Sun X, Chen J, Ritter T. Nat. Chem. 2018; 10: 1229
  • 76 Zhou M.-J, Zhang L, Liu G, Xu C, Huang Z. J. Am. Chem. Soc. 2021; 143: 16470
  • 77 Zhao H, McMillan AJ, Constantin T, Mykura RC, Juliá F, Leonori D. J. Am. Chem. Soc. 2021; 143: 14806
  • 78 Hwang SJ, Powers DC, Maher AG, Anderson BL, Hadt RG, Zheng S.-L, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2015; 137: 6472
  • 79 Hwang SJ, Anderson BL, Powers DC, Maher AG, Hadt RG, Nocera DG. Organometallics 2015; 34: 4766
  • 80 Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
  • 81 Nielsen MK, Shields BJ, Liu J, Williams MJ, Zacuto MJ, Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 7191
  • 82 Kariofillis SK, Shields BJ, Tekle-Smith MA, Zacuto MJ, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7683
  • 83 Kariofillis SK, Doyle AG. Acc. Chem. Res. 2021; 54: 988
  • 84 Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
  • 85 Maity B, Scott TR, Stroscio GD, Gagliardi L, Cavallo L. ACS Catal. 2022; 12: 13215
  • 86 Deng H.-P, Fan X.-Z, Chen Z.-H, Xu Q.-H, Wu J. J. Am. Chem. Soc. 2017; 139: 13579
  • 87 Shu X, Zhong D, Lin Y, Qin X, Huo H. J. Am. Chem. Soc. 2022; 144: 8797
  • 88 Huo L, Li X, Zhao Y, Li L, Chu L. J. Am. Chem. Soc. 2023; 145: 9876
  • 89 Ting SI, Garakyaraghi S, Taliaferro CM, Shields BJ, Scholes GD, Castellano FN, Doyle AG. J. Am. Chem. Soc. 2020; 142: 5800
  • 90 Cagan DA, Bím D, Silva B, Kazmierczak NP, McNicholas BJ, Hadt RG. J. Am. Chem. Soc. 2022; 144: 6516
  • 91 Zhang X, Shen Y, Rovis T. J. Am. Chem. Soc. 2023; 145: 3294
  • 92 Kochi JK. J. Am. Chem. Soc. 1962; 84: 2121
  • 93 Mereshchenko A, Olshin P, Karimov A, Skripkin M, Burkov K, Tver’yanovich Y, Tarnovsky A. Chem. Phys. Lett. 2014; 615: 105
  • 94 Hossain A, Vidyasagar A, Eichinger C, Lankes C, Phan J, Rehbein J, Reiser O. Angew. Chem. Int. Ed. 2018; 57: 8288
  • 95 Hossain A, Engl S, Lutsker E, Reiser O. ACS Catal. 2019; 9: 1103
  • 96 Lian P, Long W, Li J, Zheng Y, Wan X. Angew. Chem. Int. Ed. 2020; 59: 23603
  • 97 Treacy SM, Rovis T. J. Am. Chem. Soc. 2021; 143: 2729
  • 98 Lian P, Li R, Wang L, Wan X, Xiang Z, Wan X. Org. Chem. Front. 2022; 9: 4924
  • 99 He X, Chang H, Zhao Y, Li X, Liu S, Zang Z, Zhou C, Cai G. Chem. Asian J. 2023; 18: e202200954
  • 100 Charpe VP, Gupta M, Hwang KC. ChemSusChem 2022; 15: e202200957
  • 101 Li W, Liu J, Zhou M, Ma L, Zhang M. Org. Biomol. Chem. 2022; 20: 6667
  • 102 Xu P, López-Rojas P, Ritter T. J. Am. Chem. Soc. 2021; 143: 5349
  • 103 Su W, Xu P, Ritter T. Angew. Chem. Int. Ed. 2021; 60: 24012
  • 104 Xu P, Su W, Ritter T. Chem. Sci. 2022; 13: 13611
  • 105 Su W, Xu P, Petzold R, Yan J, Ritter T. Org. Lett. 2023; 25: 1025
  • 106 Li QY, Gockel SN, Lutovsky GA, DeGlopper KS, Baldwin NJ, Bundesmann MW, Tucker JW, Bagley SW, Yoon TP. Nat. Chem. 2022; 14: 94
  • 107 Dow NW, Pedersen PS, Chen TQ, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6163
  • 108 Chen TQ, Pedersen PS, Dow NW, Fayad R, Hauke CE, Rosko MC, Danilov EO, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, Castellano FN, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 8296
  • 109 Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
  • 110 Xin H, Duan X.-H, Yang M, Zhang Y, Guo L.-N. J. Org. Chem. 2021; 86: 8263
  • 111 Katta N, Zhao Q.-Q, Mandal T, Reiser O. ACS Catal. 2022; 12: 14398
  • 112 Reichle A, Sterzel H, Kreitmeier P, Fayad R, Castellano FN, Rehbein J, Reiser O. Chem. Commun. 2022; 58: 4456
  • 113 Kumar M, Verma S, Mishra V, Reiser O, Verma AK. J. Org. Chem. 2022; 87: 6263
  • 114 Mandal T, Katta N, Paps H, Reiser O. ACS Org. Inorg. Au 2023; 3: 171