DOI: 10.1055/s-0042-1751580

Stereoselective Synthesis of Unsymmetrical 1,1-Diborylalkenes

Xiangyu Lou
a   Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. of China
Jiaxin Lin
b   Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. of China
Hairong Lyu
a   Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. of China
› Author Affiliations
Financial support was provided by the Research Grants Council of HKSAR (24307423) and the Chinese University of Hong Kong (4933621, 4053561).

Dedicated to Professor Zuowei Xie on the occasion of his 60th birthday


1,1-Diborylalkene, a class of important diboryl species, serves as the synthetic precursor of multisubstituted olefin, which is a prevalent building block in natural products, functional materials, and pharmaceuticals. Current methods mainly afford symmetrical 1,1-diborylalkenes, and late-stage differentiation of the two identical boryl groups is required to achieve selective difunctionalization. In comparison, stereoselective synthesis of unsymmetrical 1,1-diborylalkenes (UDBA) are less-explored. This Synpacts article provides a brief summary of the achievements in the synthesis of UDBAs. In particularly, we highlight our recent work on the unsymmetrical 1,1-diborylation of alkynes using a neutral sp2–sp3 diboron reagent to access UDBAs and their controllable stepwise derivatization.

1 Introduction

2 Background: Unsymmetrical 1,1-Diborylalkene Synthesis

3 Stereoselective Unsymmetrical 1,1-Diborylation of Alkynes with a Neutral sp2–sp3 Diboron Reagent

4 Summary and Outlook

Publication History

Received: 28 December 2023

Accepted after revision: 18 March 2024

Article published online:
02 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • For selected reviews and examples, see:
    • 1a Hata T, Kitagawa H, Masai H, Kurahashi T, Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2001; 40: 790
    • 1b Coapes R B, Souza F ES, Thomas R L, Hall J J, Marder T B. Chem. Commun. 2003;  614
    • 1c Mkhalid IA. I, Coapes RB, Edes SN, Coventry DN, Souza FE. S, Thomas RL, Hall JJ, Bi S.-W, Lin Z, Marder TB. Dalton Trans. 2008;  1055
    • 1d Takaya J, Kirai N, Iwasawa N. J. Am. Chem. Soc. 2011; 133: 12980
    • 1e Wen H, Zhang L, Zhu S, Liu G, Huang Z. ACS Catal. 2017; 7: 6419
    • 1f Gao Y, Wu Z.-Q, Engle KM. Org. Lett. 2020;  22: 5235
    • 1g Procter RJ, Uzelac M, Cid J, Rushworth PJ, Ingleson MJ. ACS Catal. 2019;  9: 5760
    • 1h Lee CI, Shih WC, Zhou J, Reibenspies JH, Ozerov OV. Angew. Chem. Int. Ed. 2015; 54: 14003
    • 1i Morinaga A, Nagao K, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2015; 54: 15859
    • 1j Li J, An M, Gao Z, Guo Y, Liu H, Zhao P, Bi X, Shi E, Xiao J. RSC Adv. 2022;  12: 16530
    • 1k Gu Y, Duan Y, Shen Y, Martin R. Angew. Chem. Int. Ed. 2020;  59: 2061

      For selected reviews and examples, see:
    • 2a Shimizu M, Nakamaki C, Shimono K, Schelper M, Kurahashi T, Hiyama T. J. Am. Chem. Soc. 2005; 127: 12506
    • 2b Zhang M, Yao Y, Stang PJ, Zhao W. Angew. Chem. Int. Ed. 2020;  59: 20090
    • 2c Matteson DS. Synthesis 1975; 147
    • 2d Iwasaki M, Nishihara Y. Chem. Rec. 2016; 16: 2031
    • 2e Royes J, Cuenca AB, Fernández E. Eur. J. Org. Chem. 2018; 2728
  • 3 Hyodo K, Suetsugu M, Nishihara Y. Org. Lett. 2014; 16: 440
  • 4 Tani T, Sawatsugawa Y, Sano Y, Hirataka Y, Takahashi N, Hashimoto S, Sugiura T, Tsuchimoto T. Adv. Synth. Catal. 2019;  361: 1815
  • 5 Krautwald S, Bezdek MJ, Chirik PJ. J. Am. Chem. Soc. 2017; 139: 3868
  • 6 Li H, Carroll PJ, Walsh PJ. J. Am. Chem. Soc. 2008;  130: 3521
  • 7 Weber L, Eickho D, Halama J, Werner S, Kahlert J, Stammler HG, Neumann B. Eur. J. Inorg. Chem. 2013;  2608
  • 8 Ge F, Tao X, Daniliuc CG, Kehr G, Erker G. Angew. Chem. Int. Ed. 2018; 57: 14570
  • 9 Liu XC, Ming WB, Luo XL, Friedrich A, Maier J, Radius U, Santos WL, Marder TB. Eur. J. Org. Chem. 2020; 1941
  • 10 Doan SH, Ton NN, Mai BK, Nguyen TV. ACS Catal. 2022; 12: 12409
  • 11 Eghbarieh N, Hanania N, Masarwa A. Nat. Commun. 2023; 14: 2022
  • 12 Lou X, Lin J, Kwok CY, Lyu H. Angew. Chem. Int. Ed. 2023; 62: e202312633
  • 13 Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016;  116: 9091

    • For selected reviews and examples of sp2–sp3 diboranes, see:
    • 14a Dewhurst RD, Neeve EC, Braunschweig H, Marder TB. Chem. Commun. 2015; 51:  9594
    • 14b Zheng J, Li ZH, Wang H. Chem. Sci. 2018; 9: 1433
    • 14c Gao M, Thorpe SB, Santos WL. Org. Lett. 2009; 11: 3478
    • 14d Smith JR, Collins BS. L, Hesse MJ, Graham MA, Myers EL, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 9148
    • 14e Ding S, Xu L, Miao Z. Molecules 2019; 24: 1325
    • 15a Cid J, Hermann A, Radcliffe JE, Curless LD, Braunschweig H, Ingleson MJ. Organometallics 2018; 37: 1992
    • 15b Trose M, Cordes DB, Slawin AM. Z, Stasch A. Eur. J. Inorg. Chem. 2020; 3811

      For selected reviews, see:
    • 16a Scharnagl FK, Bose SK, Marder TB. Org. Biomol. Chem. 2017;  15: 1738
    • 16b St DenisJ. D, He Z, Yudin AK. ACS Catal. 2015;  5: 5373

      For selected examples of acylborane's synthesis, see:
    • 17a He Z, Trinchera P, Adachi S, St DenisJ. D, Yudin AK. Angew. Chem. Int. Ed. 2012;  51: 11092
    • 17b Lepage ML, Lai S, Peressin N, Hadjerci R, Patrick BO, Perrin DM. Angew. Chem. Int. Ed. 2017;  56: 15257
    • 17c Lin S, Wang L, Aminoleslami N, Lao Y, Yagel C, Sharma A. Chem. Sci. 2019;  10: 4684
    • 17d Yamashita M, Suzuki Y, Segawa Y, Nozaki K. J. Am. Chem. Soc. 2007;  129: 9570
    • 17e Erös G, Kushida Y, Bode JW. Angew. Chem. Int. Ed. 2014;  53: 7604
    • 17f Campos J, Aldridge S. Angew. Chem. Int. Ed. 2015;  54: 14159
    • 17g Molander GA, Raushel J, Ellis NM. J. Org. Chem. 2010;  75: 4304
    • 17h Tan D, Cai Y, Zeng Y, Lv W, Yang L, Li Q, Wang H. Angew. Chem. Int. Ed. 2019;  58: 13784
    • 17i Qian J, Liu L.-C, Chen Z.-H, Liu Y, Li Y, Li Q, Wang H. Sci. China Chem. 2023;  67: 568

      For selected examples, see:
    • 18a Shimoi M, Watanabe T, Maeda K, Curran DP, Taniguchi T. Angew. Chem. Int. Ed. 2018;  57: 9485
    • 18b Nerkar S, Curran DP. Org. Lett. 2015;  17: 3394