Synthesis 2021; 53(13): 2167-2182
DOI: 10.1055/a-1389-1438
short review

1,3-Bifunctional Nucleophilic Allylation Reagents: Preparative Methods and Synthetic Applications

Jiaming Liu
,
Ming Chen
Financial support provided by Auburn University is gratefully acknowledged.


Abstract

1,3-Bifunctional nucleophilic allylation reagents play an important role in organic synthesis. In this short review, we summarize the methods for the preparation of 1,3-bifunctional reagents and their reactions with various electrophiles. Synthetic applications of these reagents in the context of complex molecule synthesis are also discussed.

1 Introduction

2 Reagent Synthesis

2.1 Symmetrical Reagents

2.2 Unsymmetrical Reagents

2.2.1 Bis-silane and Silyl-stannane Reagents

2.2.2 Bis-boron and Silyl-boron Reagents

3 Synthetic Applications

3.1 Allylation of Aldehydes

3.2 Allylation of Ketones

3.3 Allylation of Imines

3.4 Allylation of Other Electrophiles with 1,3-Bifunctional Allylation Reagents

4 Summary



Publication History

Received: 24 December 2020

Accepted after revision: 11 February 2021

Accepted Manuscript online:
11 February 2021

Article published online:
22 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lachance H, Hall DG. Org. React. 2008; 73: 1
  • 2 Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
  • 3 Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2013; 113: 5595
  • 4 Jonnalagadda SC, Suman P, Patel A, Jampana G, Colfer A. Allylboration . In Boron Reagents in Synthesis, Chap. 3. Coca A. ACS Symposium Series 1236; American Chemical Society; Washington DC: 2016: 67-122
  • 5 There are examples in which the allylmetal unit in D can undergo electrophilic allylation reactions. Such cases are beyond the scope of this review.
  • 6 Guyot B, Pornet J, Miginiac L. Tetrahedron 1991; 47: 3981
  • 7 Barrett AG. M, Braddock DC, de Koning PD. Chem. Commun. 1999; 459
  • 8 Barrett AG. M, Braddock DC, de Koning PD, White AJ. P, Williams DJ. J. Org. Chem. 2000; 65: 375
  • 9 Schlosser M, Stahle M. Angew. Chem., Int. Ed. Engl. 1980; 19: 487
  • 10 Bubnov YuN, Gurskii ME, Pershin DG. Izv. Akad. Nauk SSSR, Ser. Khim. 1987; 1193
  • 11 Chandrasekhar S, Latour S, Wuest JD, Zacharie B. J. Org. Chem. 1983; 48: 3810
  • 12 Majetich G, Nishidie H, Zhang Y. J. Chem. Soc., Perkin Trans. 1 1995; 453
  • 13 Trost BM, Curran D. J. Am. Chem. Soc. 1981; 103: 7380
  • 14 Fleming I, Pearce A. J. Chem. Soc., Perkin Trans. 1 1981; 251
  • 15 Fleming I, Marchi DJr. Synthesis 1981; 560
  • 16 Trost BM, Curran DP. Tetrahedron Lett. 1981; 22: 5023
  • 17 Trost BM, Chan DM. T, Nanninga TN. Org. Synth. 1984; 62: 266
  • 18 Kang K.-T, Woo JS, Park D.-k, Kim J.-g, Kim W.-J. Bull. Korean Chem. Soc. 1995; 16: 464
  • 19 Clive DL. J, Paul CC, Wang Z. J. Org. Chem. 1997; 62: 7028
  • 20 Driesschaert B, Leroy B. Synlett 2006; 2148
  • 21 Ryter K, Livinghouse T. J. Org. Chem. 1997; 62: 4842
  • 22 Krief A, Dumont W. Tetrahedron Lett. 1997; 38: 657
  • 23 Krief A, Dumont W, Markó IE, Murphy F, Vanherck JC, Duval R, Ollevier T, Abel U. Synlett 1998; 1219
  • 24 Chen Q, Zhang X, Su S, Xu Z, Li N, Li Y, Zhou H, Bao M, Yamamoto Y, Jin T. ACS Catal. 2018; 8: 5901
  • 25 Kissounko DA, Sita LR. J. Am. Chem. Soc. 2004; 126: 5946
  • 26 Williams DR, Claeboe CD, Liang B, Zorn N, Chow NS. C. Org. Lett. 2012; 14: 3866
  • 27 Williams DR, Kiryanov AA, Emde U, Clark MP, Berliner MA, Reeves JT. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12058
  • 28 Tanaka T, Murai Y, Kishi T, Takamura H, Kadota I. Tetrahedron Lett. 2018; 59: 763
  • 29 Liu J, Gao S, Chen M. Org. Process Res. Dev. 2019; 23: 1659
  • 30 Kawakami C, Sawamura M. J. Am. Chem. Soc. 2005; 127: 16034
  • 31 Zhang P, Roundtree IA, Morken JP. Org. Lett. 2012; 14: 1416
  • 32 Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
  • 33 Denmark SE, Fu J. Chem. Rev. 2003; 103: 2763
  • 34 Keck GE, Tarbet KH, Geraci LS. J. Am. Chem. Soc. 1993; 115: 8467
  • 35 Jephcote VJ, Pratt AJ, Thomas EJ. J. Chem. Soc., Chem. Commun. 1984; 800
  • 36 Kang K.-T, Sung TM, Kim JK, Kwon YM. Synth. Commun. 1997; 27: 1173
  • 37 Yu C.-M, Lee J.-Y, So B, Hong J. Angew. Chem. Int. Ed. 2002; 41: 161
  • 38 Mathieu B, Ghosez L. Tetrahedron Lett. 1997; 38: 5497
  • 39 Marko IE, Mekhalfia A, Bayston DJ, Adams H. J. Org. Chem. 1992; 57: 2211
  • 40 Marko IE, Bayston DJ. Tetrahedron Lett. 1993; 34: 6595
  • 41 Lee B, Kwon J, Yu CM. Synlett 2009; 1498
  • 42 Mitsunobu O. Synthesis 1981; 1
  • 43 Dembinski R. Eur. J. Org. Chem. 2004; 2763
  • 44 Stork G, Niu D, Fujimoto A, Koft ER, Balkovec JM, Tata JR, Dake GR. J. Am. Chem. Soc. 2001; 123: 3239
  • 45 Loiseleur O, Ritson D, Nina M, Crowley P, Wagner T, Hanessian S. J. Org. Chem. 2007; 72: 6353
  • 46 Keck GE, Covel JA, Schiff T, Yu T. Org. Lett. 2002; 4: 1189
  • 47 Pettit GR, Herald CL, Doubek DL, Herald DL. J. Am. Chem. Soc. 1982; 104: 6846
  • 48 Cutignano A, Bruno I, Bifulco G, Caspullo A, Debitus C, Gomez-Paloma L, Riccio R. Eur. J. Org. Chem. 2001; 775
  • 49 Ohta S, Uy MM, Yanai M, Ohta E, Hirata T, Ikegami S. Tetrahedron Lett. 2006; 47: 1957
  • 50 Sánchez CC, Keck GE. Org. Lett. 2005; 7: 3053
  • 51 Keck GE, Poudel YB, Cummins TJ, Rudra A, Covel JA. J. Am. Chem. Soc. 2011; 133: 744
  • 52 Lu Y, Woo SK, Krische MJ. J. Am. Chem. Soc. 2011; 133: 13876
  • 53 Lemaire-Audoire S, Vogel P. J. Org. Chem. 2000; 65: 3346
  • 54 Brown HC, Jadhav PK, Perumal PT. Tetrahedron Lett. 1984; 25: 5111
  • 55 Racherla US, Brown HC. J. Org. Chem. 1991; 56: 401
  • 56 Perron F, Albizati KF. Chem. Rev. 1989; 89: 1617
  • 57 Mori K, Uematsu T, Watanabe H, Yanagi K, Minobe M. Tetrahedron Lett. 1984; 25: 3875
  • 58 Mori K, Uematsu T, Yanagi K, Minobe M. Tetrahedron 1985; 41: 2751
  • 59 Paquette LA, Zuev D. Tetrahedron Lett. 1997; 38: 5115
  • 60 Pietruszka J. Angew. Chem. Int. Ed. 1998; 37: 2629
  • 61 Williams DR, Klingler FD. Tetrahedron Lett. 1987; 28: 869
  • 62 Oku N, Takada K, Fuller RW, Wilson JA, Peach ML, Pannell LK, McMahon JB, Gustafson KR. J. Am. Chem. Soc. 2010; 132: 10278
  • 63 Meissner A, Kishi T, Fujisawa Y, Murai Y, Takamura H, Kadota I. Tetrahedron Lett. 2018; 59: 4492
  • 64 Ai Y, Kozytska MV, Zou Y, Khartulyari AS, Smith AB. III. J. Am. Chem. Soc. 2015; 137: 15426
  • 65 Wright AE, Cook Botelho J, Guzmán E, Harmody D, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK. J. Nat. Prod. 2007; 70: 412
  • 66 Meissner A, Tanaka N, Takamura H, Kadota I. Tetrahedron Lett. 2019; 60: 432
  • 67 Quintard A, Rodriguez J. Org. Lett. 2019; 21: 453
  • 68 Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
  • 69 Luo G, Xiang M, Krische MJ. Org. Lett. 2019; 21: 2493
  • 70 Takuwa A, Saito H, Nishigaichi Y. Chem. Commun. 1999; 1963
  • 71 Butcher E, Rhodes CJ, Standing M, Davidson RS, Bowser R. J. Chem. Soc., Perkin Trans. 2 1992; 1469
  • 72 Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc. 2006; 128: 12660
  • 73 Zhang Y, Li N, Qu B, Ma S, Lee H, Gonnella NC, Gao J, Li W, Tan Z, Reeves JT, Wang J, Lorenz JC, Li G, Reeves DC, Premasiri A, Grinberg N, Haddad N, Lu BZ, Song JJ, Senanayake CH. Org. Lett. 2013; 15: 1710
  • 74 Silverio DL, Torker S, Pilyugina T, Vieira EM, Snapper ML, Haeffner F, Hoveyda AH. Nature 2013; 494: 216
  • 75 Liu J, Tong X, Chen M. J. Org. Chem. 2020; 85: 5193
  • 76 Fleming I, Pearce A, Snowden RL. J. Chem. Soc., Chem. Commun. 1976; 182
  • 77 Wierschke SG, Chandrasekhar J, Jorgensen WL. J. Am. Chem. Soc. 1985; 107: 1496
  • 78 Lambert JB, Wang GT, Finzel RB, Teramura DH. J. Am. Chem. Soc. 1987; 109: 7838
  • 79 Kang K.-T, Sung T.-M, Jung H.-C, Lee J.-G. Bull. Korean Chem. Soc. 2008; 29: 1669
  • 80 Kang Y.-T, Kim EH, Kim WJ, Song NS, Shin JK, Cho BY. Synlett 1998; 921
  • 81 Kang K.-T, Hwang SS, Kwak WY, Yoon UC. Bull. Korean Chem. Soc. 1999; 20: 801
  • 82 As coined by Hall, the 1,3-bifunctional allylation reagents that we surveyed in this short review belong to type II double allyl­ation reagents; see: Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007, 129, 3070. Another class of 1,3-bifunctional allylation reagents are the type I double allylation reagents. Such reagents react with a first electrophile E1 and simultaneously reveal a second allylic metal unit that can react with another electrophile E2. Due to space limitations of the present review, such reagents (type I) will be the topic of a future review