Synthesis 2021; 53(18): 3372-3382
DOI: 10.1055/a-1468-8377
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Rhodium(I)-Catalyzed CO-Gas-Free Arylative Dual-Carbonylation of Alkynes with Arylboronic Acids via the Formyl C–H Activation of Formaldehyde

a   Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
,
Chuang Wang
a   Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
,
Hiroki Tanimoto
b   Academic Assembly, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
,
Levent Artok
c   Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
,
Kiyomi Kakiuchi
a   Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
› Author Affiliations


Abstract

The rhodium(I)-catalyzed reaction of alkynes with aryl­boronic acids in the presence of formaldehyde results in a CO-gas-free arylative dual-carbonylation to produce γ-butenolide derivatives. The simultaneous loading of phosphine-ligated and phosphine-free rhodium(I) complexes is required for efficient catalysis. The former complex catalyzes the abstraction of a carbonyl moiety from formaldehyde through the activation of its formyl C–H bond (decarbonylation) and the latter catalyzes the subsequent dual-incorporation of the resulting carbonyl unit (carbonylation). The use of larger amounts of the phosphine-ligated rhodium(I) complex generates more carbonyl units, leading to the formation γ-butenolides via the dual-incorporation of the carbonyl unit.

Supporting Information



Publication History

Received: 12 March 2021

Accepted after revision: 29 March 2021

Accepted Manuscript online:
29 March 2021

Article published online:
22 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For recent reviews on hydroacylation, see:
    • 1a Willis MC. Chem. Rev. 2010; 110: 725
    • 1b Leung JC, Krische MJ. Chem. Sci. 2012; 3: 2202
    • 1c Yang L, Huang H. Catal. Sci. Technol. 2012; 2: 1099
    • 2a First report, stoichiometric reaction, Rh: Tsuji J, Ohno K. Tetrahedron Lett. 1965; 3969

    • For catalytic Rh reactions, see:
    • 2b Doughty DH, Pignolet LH. J. Am. Chem. Soc. 1978; 100: 7083
    • 2c Kreis M, Palmelund A, Bunch L, Madsen R. Adv. Synth. Catal. 2006; 348: 2148
    • 2d Fessard TC, Andrews SP, Motoyoshi H, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 9331
    • 2e Fristrup P, Kreis M, Palmelund A, Norrby P.-O, Madsen R. J. Am. Chem. Soc. 2008; 130: 5206
    • 2f Catalytic, Ir: Iwai T, Fujihara T, Tsuji Y. Chem. Commun. 2008; 6215
    • 2g Catalytic, Pd: Modak A, Deb A, Patra T, Rana T, Maity S, Maiti D. Chem. Commun. 2012; 48: 4253
  • 3 For a selected paper on the utilization of the decarbonylation in a total synthesis, see: Zhang H, Padwa A. Tetrahedron Lett. 2006; 47: 3905

    • For reviews on the CO-gas-free carbonylation reaction including the use of aldehydes as a carbonyl source, see:
    • 4a Morimoto T, Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
    • 4b Wu L, Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6310
    • 4c Gautam P, Bhanage BM. Catal. Sci. Technol. 2015; 5: 4663
    • 4d Cao J, Zheng Z.-J, Xu Z, Xu LW. Coord. Chem. Rev. 2017; 336: 43
    • 4e Gorbunov DN, Nenasheva MV, Kardasheva YS, Karakhanov EA. Russ. Chem. Bull. 2020; 69: 625
  • 5 Morimoto T, Fuji K, Tsutsumi K, Kakiuchi K. J. Am. Chem. Soc. 2002; 124: 3806
    • 6a Morimoto T, Yamazaki K, Hirano A, Tsutsumi K, Kagawa N, Kakiuchi K, Harada Y, Fukumoto Y, Chatani N, Nishioka T. Org. Lett. 2009; 11: 1777
    • 6b Makado G, Morimoto T, Sugimoto Y, Tsutsumi K, Kagawa N, Kakiuchi K. Adv. Synth. Catal. 2010; 352: 299
    • 6c Wang C, Morimoto T, Kaneshiro H, Tanimoto H, Nishiyama Y, Kakiuchi K, Artok L. Synlett 2014; 25: 1155
    • 6d Furusawa T, Morimoto T, Ikeda K, Tanimoto H, Nishiyama Y, Kakiuchi K, Jeong N. Tetrahedron 2015; 71: 875
    • 6e Furusawa T, Morimoto T, Nishiyama Y, Tanimoto H, Kakiuchi K. Chem. Asian J. 2016; 11: 2312
    • 6f Furusawa T, Tanimoto H, Nishiyama Y, Morimoto T, Kakiuchi K. Adv. Synth. Catal. 2017; 359: 240
    • 6g Furusawa T, Tanimoto H, Nishiyama Y, Morimoto T, Kakiuchi K. Chem. Lett. 2017; 46: 926
    • 6h Pan J, Morimoto T, Kobayashi H, Tanimoto H, Kakiuchi K. Heterocycles 2019; 98: 519
    • 6i Morimoto T, Yamashita M, Tomiie A, Tanimoto H, Kakiuchi K. Chem. Asian J. 2020; 15: 473

      For books on rhodium-catalyzed reactions in organic synthesis, see:
    • 7a Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005
    • 7b Rhodium Catalysis in Organic Synthesis . Tanaka K. Wiley-VCH; Weinheim: 2019
    • 8a Laduwahetty T. Contemp. Org. Synth. 1995; 2: 133
    • 8b Collins I. Contemp. Org. Synth. 1996; 3: 295
    • 8c Collins I. Contemp. Org. Synth. 1997; 4: 281
  • 9 Abbreviations: cod = 1,5-cyclooctadiene, dppp = 1,3-bis(diphenylphosphino)propane, BIPHEP = 2,2′-bis(diphenylphosphino)biphenyl, BINAP = 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl, dppf = 1,1′-ferrocenediyl-bis(diphenylphosphine), dppb = 1,3-bis(diphenylphosphino)butane.
    • 10a Aksin Ö, Dege N, Artok L, Türkmen H, Çetinkaya B. Chem. Commun. 2006; 3187
    • 10b Kuş M, Aksin Ö, Ziyanak F, Artok L. Synlett 2008; 2587
    • 10c Artok L, Kuş M, Aksin-Artok Ö, Dege NF, Özkilinç FY. Tetrahedron 2009; 65: 9125
  • 11 Bunten KA, Farrar DH, Poë AJ, Lough A. Organometallics 2002; 21: 3344
  • 12 James BR, Mahajan D. Can. J. Chem. 1977; 57: 180
  • 13 [RhCl(C2H4)2]2 instead of [RhCl(cod)]2 also catalyzed the reaction of 1 with 2a in the presence of formaldehyde under the above standard conditions to give 3a and 4a in 64% yield (3a, 11%; 4a, 53%) along with 5a in 6% yield.
  • 14 The 31P NMR spectrum shows that some signals for small amounts of P are also observed in the area of 20–30 ppm, which are split by coupling with a rhodium nucleus. Thus, other dppp-ligated rhodium(I) species are also present in the mixture.

    • For RhCl(dppp)2, see:
    • 15a Shibata T, Toshida N, Takagi K. Org. Lett. 2002; 4: 1619
    • 15b Shibata T, Toshida N, Takagi K. J. Org. Chem. 2002; 67: 7446
    • 15c For [RhCl(dppp)]2, see reference 2e.
  • 16 For a representative review on vinylogous aldol reactions, see: Casiraghi G, Zanardi F, Appendino G, Rassu G. Chem. Rev. 2000; 100: 1929
  • 17 Giordano G, Crabtree RH. Inorg. Synth. 1979; 19: 218