Synthesis 2021; 53(20): 3699-3715
DOI: 10.1055/a-1522-7460
short review

Recent Advances in Transition-Metal-Catalyzed Selective C–H Alkoxycarbonyldifluoromethylation Reactions of Aromatic Substrates

Guodong Ju
a   Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, P. R. of China
,
Guanglian Tu
a   Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, P. R. of China
,
Yingsheng Zhao
a   Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, P. R. of China
b   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. of China
› Author Affiliations
This work was supported by Natural Science Foundation of China (Nos. 21772139), the Major Basic Research Project of the Natural Science Foundation of Jiangsu Higher Education Institutions (17KJA150006), the Jiangsu Province Natural Science Found for Distinguished Young Scholars (BK20180041), Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708), and the PAPD Project. The project was also supported by the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University.


Abstract

Fluorine is well-known as a very special element. Approximately 30% of agrochemicals and 20% of all drugs contain fluorine; most of those compounds have unique functions in biochemistry, pharmacy, and bioscience and those containing alkoxycarbonyldifluoromethyl functional groups often have irreplaceable roles. Therefore, the selective introduction of alkoxycarbonyldifluoromethylated functional groups into various aromatic substrates has significant practical application. This review describes recent advances in selective alkoxycarbonyldifluoromethylation of aromatic substrates by using different catalytic strategies (cyclometalated ruthenium complex, transient regulating and visible-light-induced strategies).

1 Introduction

2 para-C–H Alkoxycarbonyldifluoromethylation of Aromatic Derivatives

2.1 Ruthenium Catalysis

2.2 Palladium Catalysis

2.3 Visible-Light Catalysis

2.4 Iron Catalysis

3 meta-C–H Alkoxycarbonyldifluoromethylation of Aromatic Derivatives

3.1 Ruthenium Catalysis

3.2 Palladium Catalysis

4 The Influence of Transition Metals and Directing Groups on Site Selectivity of Alkoxycarbonyldifluoromethylation

4.1 The Influence of Directing Groups on the Site Selectivity of Alkoxycarbonyldifluoromethylation

4.2 The Influence of Transition Metals on the Site Selectivity of Alkoxycarbonyldifluoromethylation

5 Conclusions



Publication History

Received: 25 April 2021

Accepted after revision: 02 June 2021

Accepted Manuscript online:
02 June 2021

Article published online:
13 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vulpetti A, Dalvit C. Drug Discovery Today 2012; 17: 890
    • 1b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1c Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1d Ametamey SM, Honer M, Schubiger PA. Chem. Rev. 2008; 108: 1501
    • 1e Jeschke P. ChemBioChem 2004; 5: 570
    • 1f Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 1g Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 1h Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. Science 2020; 23: 101467
    • 2a Levi N, Amir D, Gershonov E, Zafrani Y. Synthesis 2019; 51: 4549
    • 2b Xu C, Guo W.-H, He X, Guo Y.-L, Zhang X.-Y, Zhang X. Nat. Commun. 2018; 9: 1170
    • 2c Feng Z, Min Q.-Q, Fu X.-P, An L, Zhang X. Nat. Chem. 2017; 9: 918
    • 2d Lemos A, Lemaire C, Luxen A. Adv. Synth. Catal. 2019; 361: 1500
  • 3 Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
  • 5 Mizukado J, Matsukawa Y, Quan H.-D, Tamura M, Sekiya A. J. Fluorine Chem. 2006; 127: 400
  • 6 Zhu D, Shao X, Hong X, Lu L, Shen Q. Angew. Chem. Int. Ed. 2016; 55: 15807
    • 7a Fedorov OV, Struchkova MI, Dilman AD. J. Org. Chem. 2016; 81: 9455
    • 7b Song X, Tian S, Zhao Z, Zhu D, Wang M. Org. Lett. 2016; 18: 3414
  • 8 Jiang L, Yan Q, Wang R, Ding T, Yi W, Zhang W. Chem. Eur. J. 2018; 24: 18749
  • 9 Levchenko K, Datsenko OP, Serhiichuk O, Tolmachev A, Iaroshenko VO, Mykhailiuk PK. J. Org. Chem. 2016; 81: 5803
    • 10a Feng Z, Xiao Y.-L, Zhang X. Acc. Chem. Res. 2018; 51: 2264
    • 10b Aikawa K, Serizawa H, Ishii K, Mikami K. Org. Lett. 2016; 18: 3690
  • 11 Dong D.-Q, Yang H, Shi J.-L, Si W.-J, Wang Z.-L, Xu X.-M. Org. Chem. Front. 2020; 7: 2538
  • 12 Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 10571
  • 13 Ruiz S, Villuendas P, Urriolabeitia EP. Tetrahedron Lett. 2016; 57: 3413
  • 14 Singh KS. Catalysts 2019; 9: 173
  • 15 Chen C, Zeng R, Zhang J, Zhao Y. Eur. J. Org. Chem. 2017; 6947
  • 16 Yuan C, Zhu L, Zeng R, Lan Y, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 1277
  • 17 Yuan C, Zhu L, Chen C, Chen X, Yang Y, Lan Y, Zhao Y. Nat. Commun. 2018; 9: 1189
  • 18 Wang X.-G, Li Y, Zhang L.-L, Zhang B.-S, Wang Q, Ma J.-W, Liang Y.-M. Chem. Commun. 2018; 54: 9541
  • 19 Cheng Y, He Y, Zheng J, Yang H, Liu J, An G, Li G. Chin. Chem. Lett. 2021; 32: 1437
  • 20 Shi W.-Y, Ding Y.-N, Liu C, Zheng N, Gou X.-Y, Li M, Zhang Z, Liu H.-C, Niu Z.-J, Liang Y.-M. Chem. Commun. 2020; 56: 12729
  • 21 Tu G, Yuan C, Li Y, Zhang J, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 15597
  • 22 Mao Y.-J, Wang B.-X, Wu Q.-Z, Zhou K, Lou S.-J, Xu D.-Q. Chem. Commun. 2019; 55: 2019
  • 23 Tu G, Wang D, Yuan C, Zhang J, Zhao Y. J. Org. Chem. 2020; 85: 10740
  • 24 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 25 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 26a Fu WJ, Zhu M, Zou GL, Xu C, Wang ZQ, Ji BM. J. Org. Chem. 2015; 80: 4766
    • 26b Tang S, Deng Y.-L, Li J, Wang W.-X, Ding G.-L, Wang M.-W, Xiao Z.-P, Wang Y.-C, Sheng R.-L. J. Org. Chem. 2015; 80: 12599
  • 28 Zhou J, Wang F, Lin Z, Cheng C, Zhang Q, Li J. Org. Lett. 2020; 22: 68
  • 29 Tang W.-K, Tang F, Xu J, Zhang Q, Dai J.-J, Feng Y.-S, Xu H.-J. Chem. Commun. 2020; 56: 1497
  • 30 Fan W.-T, Li Y, Wang D, Ji S.-J, Zhao Y. J. Am. Chem. Soc. 2020; 142: 20524
  • 31 Ali R, Siddiqui R. Adv. Synth. Catal. 2021; 363: 1290
  • 32 Ruan Z, Zhang S.-K, Zhu C, Ruth PN, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 2045
  • 33 Yuan CC, Chen XL, Zhang JY, Zhao YS. Org. Chem. Front. 2017; 4: 1867
  • 34 Wang X.-G, Li Y, Liu H.-C, Zhang B.-S, Gou X.-Y, Wang Q, Ma J.-W, Liang Y.-M. J. Am. Chem. Soc. 2019; 141: 13914
  • 35 Tu G, Wang D, Yuan C, Zhang J, Zhao Y. J. Org. Chem. 2020; 85: 10740
  • 36 Zhao H, Ma G, Xie X, Wang Y, Hao J, Wan W. Chem. Commun. 2019; 55: 3927
    • 37a Leow D, Li G, Mei T.-S, Yu J.-Q. Nature 2012; 486: 518
    • 37b Dai H.-X, Li G, Zhang X.-G, Stepan AF, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 7567
    • 37c Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
    • 38a Saidi O, Marafie J, Ledger AE. W, Liu PM, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
    • 38b Li J, Warratz S, Zell D, De Sarkar S, Ishikawa EE, Ackermann L. J. Am. Chem. Soc. 2015; 137: 13894
    • 38c Fan Z, Ni J, Zhang A. J. Am. Chem. Soc. 2016; 138: 8470
    • 38d Warratz S, Ackermann L. Angew. Chem. Int. Ed. 2017; 129: 1579
  • 39 Li Z.-Y, Li L, Li Q.-L, Jing K, Xu H, Wang G.-W. Chem. Eur. J. 2017; 23: 3285
    • 40a Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
    • 40b Rogge T, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 15640
    • 40c Li Z.-Y, Lakmal HH. C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
    • 40d Sukowski V, Fernández-Ibáñez MÁ. Chem 2020; 6: 1209
  • 41 Yuan C, Dai P, Bao X, Zhao Y. Org. Lett. 2019; 21: 6481
  • 42 Wang J, Pang Y.-B, Tao N, Zeng R, Zhao Y. Org. Lett. 2020; 22: 854