Synthesis 2021; 53(24): 4599-4613
DOI: 10.1055/a-1561-7953
short review

Boron Lewis Pair Mediated C–H Activation and Borylation

Frédéric-Georges Fontaine
,
Vincent Desrosiers
V.D. acknowledges the Fonds de recherche du Québec - Nature et Technologies (FRQNT) and the Natural Sciences and Engineering Research Council (NSERC) for scholarships. F.-G.F. thanks NSERC for a Canada Research Chair. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Centre de Catalyse et Chimie Verte (Québec).


§ Canada Research Chair in Green Catalysis and Metal-Free Processes

Abstract

In the few past years, the chemistry of frustrated Lewis pairs (FLP) has enabled a plethora of transformations that would otherwise only be possible using transition metal catalysts. Of particular interest are C–H bond activation and borylation reactions, which are the subject of this review. The FLP borylation chemistry is compared with the early borylation methodologies using strongly electrophilic borenium ions. We present the mechanism of the C–H borylation using inter- and intramolecular Lewis pairs, along with some applications of these transformations.

1 Introduction

2 Electrophilic Borylation

3 Intramolecular or Directed Electrophilic Borylation

4 Intermolecular FLP-Mediated C–H Borylation

5 Stoichiometric Borylation by Intramolecular FLPs

5.1 Csp–H Borylation

5.2 Csp2–H Borylation

5.3 Csp3–H Borylation

6 Catalytic Borylation by Intramolecular FLPs

7 Catalytic Borylation by Self-Assembled FLPs

8 Conclusion



Publication History

Received: 30 June 2021

Accepted after revision: 29 July 2021

Accepted Manuscript online:
29 July 2021

Article published online:
23 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 2 Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
  • 3 Hartwig JF. Acc. Chem. Res. 2012; 45: 864
  • 4 Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
  • 5 Fernández E, Whiting A. Synthesis and Application of Organoboron Compounds . In Topics in Organometallic Chemistry, Vol. 49. Springer International; Switzerland: 2015
  • 6 Busacca CA, Fandrick DR, Song JJ, Senanayake CH. Transition Metal Catalysis in the Pharmaceutical Industry. In Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective, Chap. 1. Crawley ML, Trost BM. John Wiley & Sons; Hoboken: 2012: 1-24
  • 7 Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
  • 8 King AO, Yasuda N. Organometallics in Process Chemistry . In Topics in Organometallic Chemistry, Vol. 6, Chap. 8. Springer; Heidelberg: 2004: 205-245
  • 9 Sakamoto J, Rehahn M, Wegner G, Schlüter AD. Macromol. Rapid Commun. 2009; 30: 653
  • 10 Krishna A, Lunchev AV, Grimsdale AC. Synthetic Methods for Conjugate Polymer and Carbon Materials . Leclerc M, Morin J.-F. Wiley-VCH; Weinheim: 2017. Chap. 2, 59-95
  • 11 Yang F, Zhu M, Zhang J, Zhou H. Med. Chem. Commun. 2018; 9: 201
  • 12 Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
  • 13 Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, Vol. 1 and 2. Hall DG. Wiley-VCH; Weinheim: 2011
  • 14 Ménard AD, Trant JF. Nat. Chem. 2020; 12: 17
  • 15 Kemsley J. Chem. Eng. News 2009; 87 (31) 29-34
  • 16 Rathman T, Schwindeman JA. Org. Process Res. Dev. 2014; 18: 1192
  • 17 Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
  • 18 Obligacion JV, Semproni SP, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 4133
  • 19 Stahl T, Müther K, Ohki Y, Tatsumi K, Oestreich M. J. Am. Chem. Soc. 2013; 135: 10978
  • 20 Graedel TE, Harper EM, Nassar NT, Nuss P, Reck BK, Turner BL. Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 42
  • 21 Guideline for Elemental Impurities Q3D (R1); International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH): Geneva, 2019; https://database.ich.org/sites/default/files/Q3D-R1EWG_Document_Step4_Guideline_2019_0322.pdf (accessed Sept 27 2021)
  • 22 Usluer Ö, Abbas M, Wantz G, Vignau L, Hirsch L, Grana E, Brochon C, Cloutet E, Hadziioannou G. ACS Macro Lett. 2014; 3: 1134
  • 23 Muetterties EL. J. Am. Chem. Soc. 1959; 81: 2597
  • 24 Ingleson M. Synlett 2012; 23: 1411
  • 25 De Vries TS, Prokofjevs A, Vedejs E. Chem. Rev. 2012; 112: 4246
  • 26 Del Grosso A, Pritchard RG, Muryn CA, Ingleson MJ. Organometallics 2010; 29: 241
  • 27 De Vries TS, Prokofjevs A, Harvey JN, Vedejs E. J. Am. Chem. Soc. 2009; 131: 14679
  • 28 Muetterties EL, Tebbe FN. Inorg. Chem. 1968; 17: 2663
  • 29 Del Grosso A, Singleton PJ, Muryn CA, Ingleson MJ. Angew. Chem. Int. Ed. 2011; 50: 2102
  • 30 Solomon SA, Del Grosso A, Clark ER, Bagutski V, McDouall JJ. W, Ingleson MJ. Organometallics 2012; 31: 1908
  • 31 Del Grosso A, Ayuso Carrillo J, Ingleson MJ. Chem. Commun. 2015; 51: 2878
  • 32 Prokofjevs A, Kampf JW, Vedejs E. Angew. Chem. Int. Ed. 2011; 50: 2098
  • 33 Yin Q, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 3712
  • 34 Kitani F, Takita R, Imahori T, Uchiyama M. Heterocycles 2017; 95: 158
  • 35 Welch GC, San Juan RR, Masuda JD, Stephan DW. Science 2006; 314: 1124
  • 36 Parks DJ, Piers WE. J. Am. Chem. Soc. 1996; 118: 9440
  • 37 Frustrated Lewis Pairs I: Uncovering and Understanding . Erker G, Stephan DW. Springer; Heidelberg: 2013
  • 38 Liu YL, Kehr G, Daniliuc CG, Erker G. Chem. Eur. J. 2017; 23: 12141
  • 39 McGough JS, Cid J, Ingleson MJ. Chem. Eur. J. 2017; 23: 8180
  • 40 Zhong Q, Qin S, Yin Y, Hu J, Zhang H. Angew. Chem. Int. Ed. 2018; 57: 14891
  • 41 Iqbal SA, Pahl J, Yuan K, Ingleson MJ. Chem. Soc. Rev. 2020; 49: 4564
  • 42 Dewar MJ. S, Kubba VP, Pettit R. J. Chem. Soc. 1958; 3073
  • 43 Lv J, Chen X, Xue XS, Zhao B, Liang Y, Wang M, Jin L, Yuan Y, Han Y, Zhao Y, Lu Y, Zhao J, Sun WY, Houk KN, Shi Z. Nature 2019; 575: 336
  • 44 Iqbal SA, Cid J, Procter RJ, Uzelac M, Yuan K, Ingleson MJ. Angew. Chem. Int. Ed. 2019; 58: 15381
  • 45 Fontaine F.-G, Stephan DW. Philos. Trans. R. Soc., A 2017; 375: 20170004
  • 46 Dureen MA, Stephan DW. J. Am. Chem. Soc. 2009; 131: 8396
  • 47 Jiang C, Blacque O, Berke H. Organometallics 2010; 29: 125
  • 48 Voss T, Mahdi T, Otten E, Fröhlich R, Kehr G, Stephan DW, Erker G. Organometallics 2012; 31: 2367
  • 49 Iashin V, Chernichenko K, Pápai I, Repo T. Angew. Chem. Int. Ed. 2016; 55: 14146
  • 50 Iashin V, Berta D, Chernichenko K, Nieger M, Moslova K, Pápai I, Repo T. Chem. Eur. J. 2020; 26: 13873
  • 51 Host Guest Complex Chemistry Macrocycles . Vögtle F, Weber E. Springer; Heidelberg: 1985
  • 52 Gorelsky SI, Lapointe D, Fagnou K. J. Am. Chem. Soc. 2008; 130: 10848
  • 53 Mömming CM, Frömel S, Kehr G, Fröhlich R, Grimme S, Erker G. J. Am. Chem. Soc. 2009; 131: 12280
  • 54 Chernichenko K, Madarász Á, Pápai I, Nieger M, Leskelä M, Repo T. Nat. Chem. 2013; 5: 718
  • 55 Lawson JR, Clark ER, Cade IA, Solomon SA, Ingleson MJ. Angew. Chem. Int. Ed. 2013; 52: 7518
  • 56 Chernichenko K, Lindqvist M, Kótai B, Nieger M, Sorochkina K, Pápai I, Repo T. J. Am. Chem. Soc. 2016; 138: 4860
  • 57 Roesler R, Piers WE, Parvez M. J. Organomet. Chem. 2003; 680: 218
  • 58 Lu G, Zhao L, Li H, Huango F, Wang Z.-X. Eur. J. Inorg. Chem. 2010; 2010: 2254
  • 59 Rochette É, Courtemanche MA, Fontaine F.-G. Chem. Eur. J. 2017; 23: 3567
  • 60 Légaré MA, Courtemanche MA, Rochette É, Fontaine F.-G. Science 2015; 349: 513
  • 61 Chernichenko K, Kátai B, Pápai I, Zhivonitko V, Nieger M, Leskelä M, Repo T. Angew. Chem. Int. Ed. 2015; 54: 1749
  • 62 Gómez-Gallego M, Sierra MA. Chem. Rev. 2011; 111: 4857
  • 63 Légaré Lavergne J, Jayaraman A, Misal Castro LC, Rochette É, Fontaine F.-G. J. Am. Chem. Soc. 2017; 139: 14714
  • 64 Rochette É, Bouchard N, Légaré Lavergne J, Matta CF, Fontaine F.-G. Angew. Chem. Int. Ed. 2016; 55: 12722
  • 65 Rochette É, Boutin H, Fontaine F.-G. Organometallics 2017; 36: 2870
  • 66 Légaré MA, Rochette É, Légaré Lavergne J, Bouchard N, Fontaine F.-G. Chem. Commun. 2016; 52: 5387
  • 67 Jayaraman A, Misal Castro LC, Fontaine F.-G. Org. Process Res. Dev. 2018; 22: 1489
  • 68 Bouchard N, Fontaine F.-G. Dalton Trans. 2019; 48: 4846
  • 69 Shao Y, Zhang J, Li Y, Liu Y, Ke Z. Org. Lett. 2018; 20: 1102
  • 70 Ganguly B, Patel TR. J. Phys. Org. Chem. 2021; e4250
  • 71 Rochette É, Desrosiers V, Soltani Y, Fontaine F.-G. J. Am. Chem. Soc. 2019; 141: 12305
  • 72 Bhawal BN, Morandi B. Isr. J. Chem. 2018; 58: 94
  • 73 Desrosiers V, Zavaleta Garcia C, Fontaine F.-G. ACS Catal. 2020; 10: 11046