Synthesis 2022; 54(02): 271-280
DOI: 10.1055/a-1582-0169
short review

Asymmetric Synthesis of P-Stereogenic Secondary Phosphine ­Oxides (SPOs)

US National Science Foundation CHE-1954412 and American Chemical Society, Petroleum Research Fund, 60035-ND3.


Abstract

P-Stereogenic secondary phosphine oxides [SPOs, RR′P(O)H], valuable ligands for metal complexes in asymmetric catalysis, are also building blocks for other chiral phosphorus derivatives. This short review summarizes methods used for asymmetric synthesis of P-stereogenic SPOs.

1 Introduction

2 Configurational Stability of P-Stereogenic SPOs

3 Classical Resolution, HPLC Separation, and Dynamic Resolution

4 Synthesis via Chiral Auxiliaries

5 Kinetic Resolution

6 Conclusions and Outlook



Publication History

Received: 12 July 2021

Accepted after revision: 10 August 2021

Accepted Manuscript online:
10 August 2021

Article published online:
23 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Phosphorus Ligands in Asymmetric Catalysis. Synthesis and Applications. Börner A. Wiley-VCH; Weinheim: 2008
  • 2 Xie C, Smaligo AJ, Song X.-R, Kwon O. ACS Cent. Sci. 2021; 7: 536
  • 3 van Leeuwen PW. N. M, Cano I, Freixa Z. ChemCatChem 2020; 12: 3982
  • 4 Dai W.-M, Yeung KK. Y, Leung WH, Haynes RK. Tetrahedron: Asymmetry 2003; 14: 2821
    • 5a Gallen A, Riera A, Verdaguer X, Grabulosa A. Catal. Sci. Technol. 2019; 9: 5504
    • 5b Achard T. Chimia 2016; 70: 8
    • 5c Shaikh TM, Weng C.-M, Hong F.-E. Coord. Chem. Rev. 2012; 256: 771
  • 6 Gbubele JD, Olszewski TK. Org. Biomol. Chem. 2021; 19: 2823
    • 7a Edmundson RS. In The Chemistry of Organophosphorus Compounds, Vol. 2. Hartley FR. John Wiley & Sons; Chichester: 1992: 287
    • 7b Alayrac C, Lakhdar S, Abdellah I, Gaumont A.-C. Top. Curr. Chem. 2015; 361: 1
    • 7c Cristau HJ, Plenat F. In The Chemistry of Organophosphorus Compounds, Vol. 3. Hartley FR. John Wiley & Sons; Chichester: 1994: 45
  • 8 Emmick TL, Letsinger RL. J. Am. Chem. Soc. 1968; 90: 3459
  • 9 For similar observations in synthesis of the related SPO Ph(β-naphthyl)P(O)H, see: Červinka O, Bělovský O, Hepnerová M. J. Chem. Soc. D 1970; 562
  • 10 Farnham WB, Lewis RA, Murray RK, Mislow K. J. Am. Chem. Soc. 1970; 92: 5808
  • 11 Xu Q, Zhao C.-Q, Han L.-B. J. Am. Chem. Soc. 2008; 130: 12648
    • 12a Drabowicz J, Łyżwa P, Omelańczuk J, Pietrusiewicz KM, Mikołajczyk M. Tetrahedron: Asymmetry 1999; 10: 2757
    • 12b Wang F, Polavarapu PL, Drabowicz J, Mikołajczyk M. J. Org. Chem. 2000; 65: 7561
  • 13 Haynes RK, Au-Yeung T.-L, Chan W.-K, Lam W.-L, Li Z.-Y, Yeung L.-L, Chan AS. C, Li P, Koen M, Mitchell CR, Vonwiller SC. Eur. J. Org. Chem. 2000; 3205
  • 14 Reiff LP, Aaron HS. J. Am. Chem. Soc. 1970; 92: 5275
  • 15 Fernandez M. dF, Vlaar CP, Fan H, Liu Y.-H, Fronczek FR, Hammer RP. J. Org. Chem. 1995; 60: 7390
  • 16 Gasparrini F, Lunazzi L, Mazzanti A, Pierini M, Pietrusiewicz KM, Villani C. J. Am. Chem. Soc. 2000; 122: 4776
  • 17 Jiang X, Minnaard AJ, Hessen B, Feringa BL, Duchateau AL. L, Andrien JG. O, Boogers JA. F, de Vries JG. Org. Lett. 2003; 5: 1503
  • 18 Holt J, Maj AM, Schudde EP, Pietrusiewicz KM, Sieron L, Wieczorek W, Jerphagnon T, Arends IW. C. E, Hanefeld U, Minnaard AJ. Synthesis 2009; 2061
  • 19 Kortmann FA, Chang M.-C, Otten E, Couzijn EP. A, Lutz M, Minnaard AJ. Chem. Sci. 2014; 5: 1322
  • 20 Wang W.-M, Liu L.-J, Zhao C.-Q, Han L.-B. Eur. J. Org. Chem. 2015; 2342
    • 21a Chen T, Han L.-B. Synlett 2015; 26: 1153

    • For related syntheses, see:
    • 21b Leyris A, Bigeault J, Nuel D, Giordano L, Buono G. Tetrahedron Lett. 2007; 48: 5247
    • 21c Gatineau D, Giordano L, Buono G. J. Am. Chem. Soc. 2011; 133: 10728
    • 22a Berger O, Montchamp J.-L. Angew. Chem. Int. Ed. 2013; 52: 11377
    • 22b Berger O, Montchamp J.-L. Org. Biomol. Chem. 2016; 14: 7552
    • 22c Conversion of P-CH2OH into P–H groups under Corey–Kim conditions may proceed via attack of water at a P–CHO carbonyl during aqueous workup, see: Berger O, Gavara L, Montchamp J.-L. Org. Lett. 2012; 14: 3404
  • 23 Gatineau D, Nguyen DH, Hérault D, Vanthuyne N, Leclaire J, Giordano L, Buono G. J. Org. Chem. 2015; 80: 4132
  • 24 Kolodiazhnyi OI, Gryshkun EV, Andrushko NV, Freytag M, Jones PG, Schmutzler R. Tetrahedron: Asymmetry 2003; 14: 181
  • 25 Ackermann L. Synlett 2007; 507
  • 26 Nemoto T, Hamada Y. Tetrahedron 2011; 67: 667
  • 27 Leyris A, Nuel D, Giordano L, Achard M, Buono G. Tetrahedron Lett. 2005; 46: 8677
  • 28 Copey L, Jean-Gérard L, Andrioletti B, Framery E. Tetrahedron Lett. 2016; 57: 543
  • 29 Han ZS, Wu H, Xu Y, Zhang Y, Qu B, Li Z, Caldwell DR, Fandrick KR, Zhang L, Roschangar F, Song JJ, Senanayake CH. Org. Lett. 2017; 19: 1796
  • 30 Li S.-G, Yuan M, Topic F, Han ZS, Senanayake CH, Tsantrizos YS. J. Org. Chem. 2019; 84: 7291
    • 31a Leon T, Riera A, Verdaguer X. J. Am. Chem. Soc. 2011; 133: 5740
    • 31b Orgue S, Flores-Gaspar A, Biosca M, Pamies O, Dieguez M, Riera A, Verdaguer X. Chem. Commun. 2015; 51: 17548
    • 31c Gallen A, Orgue S, Muller G, Escudero-Adan EC, Riera A, Verdaguer X, Grabulosa A. Dalton Trans. 2018; 47: 5366
  • 32 Marquarding D, Klusacek H, Gokel G, Hoffmann P, Ugi I. J. Am. Chem. Soc. 1970; 92: 5389
  • 33 Landert H, Spindler F, Wyss A, Blaser HU, Pugin B, Ribourduoille Y, Gschwend B, Ramalingam B, Pfaltz A. Angew. Chem. Int. Ed. 2010; 49: 6873
  • 34 Wang J.-P, Nie S.-Z, Zhou Z.-Y, Ye J.-J, Wen J.-H, Zhao C.-Q. J. Org. Chem. 2016; 81: 7644
    • 35a Zimmerman AN, Xu RS, Reynolds SC, Shipp CA, Marshall DJ, Wang G, Blank NF, Gibbons SK, Hughes RP, Glueck DS, Balaich GJ, Rheingold AL. J. Org. Chem. 2020; 85: 14516
    • 35b For kinetic separations of limonene oxide diastereomers with other nucleophiles, see: Steiner D, Ivison L, Goralski CT, Appell RB, Gojkovic JR, Singaram B. Tetrahedron: Asymmetry 2002; 13: 2359
    • 36a Chen C, Zhang Z, Jin S, Fan X, Geng M, Zhou Y, Wen S, Wang X, Chung LW, Dong X.-Q, Zhang X. Angew. Chem. Int. Ed. 2017; 56: 6808
    • 36b Chen C, Wen S, Dong X.-Q, Zhang X. Org. Chem. Front. 2017; 4: 2034
  • 37 Togni A, Breutel C, Schnyder A, Spindler F, Landert H, Tijani A. J. Am. Chem. Soc. 1994; 116: 4062
  • 38 Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
  • 39 Fu X, Loh W.-T, Zhang Y, Chen T, Ma T, Liu H, Wang J, Tan C.-H. Angew. Chem. Int. Ed. 2009; 48: 7387
  • 40 Qiu H, Dai Q, He J, Li W, Zhang J. Chem. Sci. 2020; 11: 9983
  • 41 Dai Q, Liu L, Qian Y, Li W, Zhang J. Angew. Chem. Int. Ed. 2020; 59: 20645
  • 42 Dai Q, Li W, Li Z, Zhang J. J. Am. Chem. Soc. 2019; 141: 20556
  • 43 Zhang Y, He H, Wang Q, Cai Q. Tetrahedron Lett. 2016; 57: 5308
  • 44 Liu X.-T, Zhang Y.-Q, Han X.-Y, Sun S.-P, Zhang Q.-W. J. Am. Chem. Soc. 2019; 141: 16584
    • 45a Albert J, Magali Cadena J, Granell J, Muller G, Panyella D, Sañudo C. Eur. J. Inorg. Chem. 2000; 1283
    • 45b Bader A, Nullmeyers T, Pabel M, Salem G, Willis AC, Wild SB. Inorg. Chem. 1995; 34: 384
    • 45c Huang Y, Li Y, Leung P.-H, Hayashi T. J. Am. Chem. Soc. 2014; 136: 4865
  • 46 Muldoon JA, Varga BR, Deegan MM, Chapp TW, Eördögh ÁM, Hughes RP, Glueck DS, Moore CE, Rheingold AL. Angew. Chem. Int. Ed. 2018; 57: 5047
    • 48a Lebel H, Morin S, Paquet V. Org. Lett. 2003; 5: 2347
    • 48b Wang C, Huang K, Ye J, Duan W.-L. J. Am. Chem. Soc. 2021; 143: 5685
    • 49a Walther B, Schops R, Kolbe W, Scheller D. Z. Chem. 1979; 19: 417
    • 49b Powell J, Horvath MJ, Lough A. J. Chem. Soc., Dalton Trans. 1995; 2975
    • 49c Jung L.-Y, Tsai S.-H, Hong F.-E. Organometallics 2009; 28: 6044
    • 49d Wellala NP. N, Guan H. Org. Biomol. Chem. 2015; 13: 10802
    • 49e Nefedov VI, Salyn YV, Walther B, Messbauer B, Schöps R. Inorg. Chim. Acta 1980; 45: L103