Synthesis 2022; 54(04): 999-1042
DOI: 10.1055/a-1654-2318
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

Acetylene and Ethylene: Universal C2 Molecular Units in Cycloaddition Reactions

Maria S. Ledovskaya
a   Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof, 198504, Russian Federation
,
Vladimir V. Voronin
a   Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof, 198504, Russian Federation
,
Konstantin S. Rodygin
a   Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof, 198504, Russian Federation
,
a   Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof, 198504, Russian Federation
b   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russian Federation
› Author Affiliations
L.M.S. acknowledges the Council on grants of the President of the Russian Federation (МК-2615.2021.1.3). V.V.V., R.K.S., and V.P.A. acknowledge Saint Petersburg State University (Pure ID: 72776812) for financial support.


Abstract

Acetylene and ethylene are the smallest molecules that contain an unsaturated carbon–carbon bond and can be efficiently utilized in a large variety of cycloaddition reactions. In this review, we summarize the application of these C2 molecular units in cycloaddition chemistry and highlight their amazing synthetic opportunities.

1 Introduction

2 Fundamental Features and Differences of Cycloaddition Reactions Involving Acetylene and Ethylene

3 (2+1) Cycloaddition

4 [2+2] Cycloaddition

5 (3+2) Cycloaddition

6 [4+2] Cycloaddition

7 (2+2+1) Cycloaddition

8 [2+2+2] Cycloaddition

9 The Use of Acetylene and Ethylene Cycloaddition for Deuterium and 13C Labeling

10 Conclusions



Publication History

Received: 03 September 2021

Accepted after revision: 27 September 2021

Accepted Manuscript online:
27 September 2021

Article published online:
22 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293
    • 1b Zheng Y, Qin T, Zi W. J. Am. Chem. Soc. 2021; 143: 1038
    • 1c Byrne MJ, Lees NR, Han L.-C, van der Kamp MW, Mulholland AJ, Stach JE. M, Willis CL, Race PR. J. Am. Chem. Soc. 2016; 138: 6095
    • 1d Ha S, Lee Y, Kwak Y, Mishra A, Yu E, Ryou B, Park C.-M. Nat. Commun. 2020; 11: 2509
    • 1e Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 1f Houk KN, Liu F, Yang Z, Seeman JI. Angew. Chem. Int. Ed. 2021; 60: 12660
    • 1g Minami A, Oikawa H. J. Antibiot. 2016; 69: 500
    • 1h Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, am Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Nat. Rev. Methods Primers 2021; 1: 30
    • 1i Poplata S, Tröster A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748
    • 1j Simeonov SP, Nunes JP. M, Guerra K, Kurteva VB, Afonso CA. M. Chem. Rev. 2016; 116: 5744
    • 1k Liu Q.-S, Wang D.-Y, Yang Z.-J, Luan Y.-X, Yang J.-F, Li J.-F, Pu Y.-G, Ye M. J. Am. Chem. Soc. 2017; 139: 18150
    • 2a Haszeldine RN, Scott DL, Tipping AE. J. Chem. Soc., Perkin Trans. 1 1974; 1440
    • 2b Baldwin JE, Villarica KA. J. Org. Chem. 1995; 60: 186
    • 2c Spagnolo P, Zanirato P. J. Chem. Soc., Perkin Trans. 1 1988; 3375
    • 2d Waterman R, Hillhouse GL. J. Am. Chem. Soc. 2003; 125: 13350
    • 2e Scharnagel D, Escofet I, Armengol-Relats H, de Orbe ME, Korber JN, Echavarren AM. Angew. Chem. Int. Ed. 2020; 59: 4888
  • 3 Ciamician G, Silber P. Ber. Dtsch. Chem. Ges. 1908; 41: 1928
    • 4a Hamlin TA, Svatunek D, Yu S, Ridder L, Infante I, Visscher L, Bickelhaupt FM. Eur. J. Org. Chem. 2019; 378
    • 4b Rodygin KS, Vikenteva YA, Ananikov VP. ChemSusChem 2019; 12: 1483
    • 4c Ricker JD, Mohammadrezaei V, Crippen TJ, Zell AM, Geary LM. Organometallics 2018; 37: 4556
    • 4d Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Molecules 2018; 23: 2442
    • 4e Martina K, Tagliapietra S, Veselov VV, Cravotto G. Front. Chem. 2019; 7
    • 4f Ledovskaya MS, Voronin VV, Polynski MV, Lebedev AN, Ananikov VP. Eur. J. Org. Chem. 2020; 4571
    • 4g Gulevskaya AV, Nelina-Nemtseva JI. Chem. Heterocycl. Compd. 2018; 54: 1084
    • 5a Broere DL. J, Ruijter E. Synthesis 2012; 44: 2639
    • 5b Wölke C, Daniliuc CG, Kehr G, Erker G. J. Organomet. Chem. 2019; 899: 120879
    • 5c Vuong H, Klumpp DA. Synth. Commun. 2019; 49: 316
    • 5d Vuong H, Dash BP, Nilsson Lill SO, Klumpp DA. Org. Lett. 2018; 20: 1849
    • 5e Ledovskaya M, Voronin V, Rodygin K, Ananikov V. Org. Chem. Front. 2020; 7: 638
    • 5f Čížková M, Kolivoška V, Císařová I, Šaman D, Pospíšil L, Teplý F. Org. Biomol. Chem. 2011; 9: 450
    • 5g Varela JA, Saá C. Synlett 2008; 2571
    • 5h Levandowski BJ, Raines RT. Chem. Rev. 2021; 121: 6777
    • 6a Abad A, Arnó M, Cunat AC, Marín ML, Zaragozá RJ. J. Org. Chem. 1992; 57: 6861
    • 6b Arnó M, González MA, Marín ML, Zaragozá RJ. Tetrahedron Lett. 2001; 42: 1669
    • 6c Bloomfield JJ, Owsley DC. J. Am. Chem. Soc. 1971; 93: 782
    • 6d Lantos I, Ginsburg D. Tetrahedron 1972; 28: 2507
  • 7 Hosseini A, Schreiner PR. Org. Lett. 2019; 21: 3746
    • 8a Atherton JH, Fields R. J. Chem. Soc. C 1968; 1507
    • 8b Reimlinger H. Chem. Ber. 1959; 92: 970
    • 8c Huisgen R, Koszinowski J, Ohta A, Schiffer R. Angew. Chem., Int. Ed. Engl 1980; 19: 202
    • 8d Yu Y, Huang W, Chen Y, Gao B, Wu W, Jiang H. Green Chem. 2016; 18: 6445
    • 8e Voronin VV, Ledovskaya MS, Gordeev EG, Rodygin KS, Ananikov VP. J. Org. Chem. 2018; 83: 3819
    • 8f Goncharov TK, Dubikhin VV, Ignat’eva EL, Nazin GM, Aliev ZG, Aldoshin SM. Russ. J. Gen. Chem. 2013; 83: 717
    • 8g Abbott SD, Lane-Bell P, Sidhu KP. S, Vederas JC. J. Am. Chem. Soc. 1994; 116: 6513
    • 8h Ledovskaya MS, Rodygin KS, Ananikov VP. Org. Chem. Front. 2018; 5: 226
    • 8i Huisgen R, Hauck H, Seidl H, Burger M. Chem. Ber. 1969; 102: 1117
    • 8j Parsons S, Passmore J, Schriver MJ, White PS. Can. J. Chem. 1990; 68: 852
    • 9a Wu L.-Y, Xie Y.-X, Chen Z.-S, Niu Y.-N, Liang Y.-M. Synlett 2009; 1453
    • 9b Doiron J, Soultan AH, Richard R, Touré MM, Picot N, Richard R, Čuperlović-Culf M, Robichaud GA, Touaibia M. Eur. J. Med. Chem. 2011; 46: 4010
    • 9c Gonda Z, Lőrincz K, Novák Z. Tetrahedron Lett. 2010; 51: 6275
    • 11a Walsh R, Wells JM. J. Chem. Soc., Perkin Trans. 2 1976; 52
    • 11b Walsh R, Wells JM. Int. J. Chem. Kinet. 1975; 7: 319
    • 11c Marri MR, Zhang X, Yan P, Ramineni K, Xia Z, Huang T, Balaga R, Zhang ZC. Appl. Catal., A 2019; 570: 107
    • 11d Maekawa M, Miyazaki T, Sugimoto K, Okubo T, Kuroda-Sowa T, Munakata M, Kitagawa S. Inorg. Chim. Acta 2014; 410: 46
    • 11e Maekawa M, Miyazaki T, Sugimoto K, Okubo T, Kuroda-Sowa T, Munakata M, Kitagawa S. Dalton Trans. 2013; 42: 4258
    • 12a Zhong X, Lv J, Luo S. Org. Lett. 2015; 17: 1561
    • 12b Shatzmiller S, Gygax P, Hall D, Eschenmoser A. Helv. Chim. Acta 1973; 56: 2961
    • 13a Vázquez-Romero A, Cárdenas L, Blasi E, Verdaguer X, Riera A. Org. Lett. 2009; 11: 3104
    • 13b Vázquez-Romero A, Verdaguer X, Riera A. Eur. J. Org. Chem. 2013; 1716
    • 13c Joh T, Nagata H, Takahashi S. Chem. Lett. 1992; 21: 1305
    • 13d Tobisu M, Chatani N, Asaumi T, Amako K, Ie Y, Fukumoto Y, Murai S. J. Am. Chem. Soc. 2000; 122: 12663
    • 13e Chatani N, Amako K, Tobisu M, Asaumi T, Fukumoto Y, Murai S. J. Org. Chem. 2003; 68: 1591
    • 13f Chatani N, Tobisu M, Asaumi T, Fukumoto Y, Murai S. J. Am. Chem. Soc. 1999; 121: 7160
    • 13g Hoberg H, Schaefer D. J. Organomet. Chem. 1983; 251: C51
    • 13h Hoberg H, Sümmermann K, Milchereit A. J. Organomet. Chem. 1985; 288: 237
    • 13i Chatani N, Tobisu M, Asaumi T, Murai S. Synthesis 2000; 925
    • 13j Göbel A, Imhof W. Chem. Commun. 2001; 593
    • 13k Kaleta K, Fleischhauer J, Görls H, Beckert R, Imhof W. J. Organomet. Chem. 2009; 694: 3800
    • 14a Krause J, Haack K.-J, Pörschke K.-R, Gabor B, Goddard R, Pluta C, Seevogel K. J. Am. Chem. Soc. 1996; 118: 804
    • 14b Krause J, Pluta C, Pörschke K.-R, Goddard R. J. Chem. Soc., Chem. Commun. 1993; 1254
    • 15a Yamamoto Y, Arakawa T, Ogawa R, Itoh K. J. Am. Chem. Soc. 2003; 125: 12143
    • 15b Yamamoto Y, Hattori K, Nishiyama H. J. Am. Chem. Soc. 2006; 128: 8336
  • 16 Geny A, Lebœuf D, Rouquié G, Vollhardt KP. C, Malacria M, Gandon V, Aubert C. Chem. Eur. J. 2007; 13: 5408
    • 17a Gordeev EG, Pentsak EO, Ananikov VP. J. Am. Chem. Soc. 2020; 142: 3784
    • 17b Pentsak EO, Gordeev EG, Ananikov VP. Dokl. Phys. Chem. 2020; 493: 95 ; and references contained therein
  • 18 Muller P. Pure Appl. Chem. 1994; 66: 1077
    • 19a Townshend RE, Ramunni G, Segal G, Hehre WJ, Salem L. J. Am. Chem. Soc. 1976; 98: 2190
    • 19b Sakai S. J. Phys. Chem. A 2000; 104: 922
    • 19c Cui C.-X, Liu Y.-J. J. Phys. Org. Chem. 2014; 27: 652
    • 19d Black K, Liu P, Xu L, Doubleday C, Houk KN. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 12860
    • 19e Vijaya R, Dinadayalane TC, Sastry GN. J. Mol. Struct.: THEOCHEM 2002; 589-590: 291
    • 19f Dinadayalane TC, Vijaya R, Smitha A, Sastry GN. J. Phys. Chem. A 2002; 106: 1627
    • 19g Froese RD. J, Coxon JM, West SC, Morokuma K. J. Org. Chem. 1997; 62: 6991
    • 19h Sauer J, Sustmann R. Angew. Chem., Int. Ed. Engl 1980; 19: 779
  • 20 Fleming I. Frontier Orbitals and Organic Chemical Reactions . John Wiley & Sons; Chichester: 1976
  • 21 Knall A.-C, Slugovc C. Chem. Soc. Rev. 2013; 42: 5131
  • 22 Jursic BS. J. Mol. Struct.: THEOCHEM 1998; 454: 105
    • 23a Punnagai M, Dinadayalane TC, Sastry GN. J. Phys. Org. Chem. 2004; 17: 152
    • 23b Dinadayalane TC, Punnagai M, Sastry GN. J. Mol. Struct.: THEOCHEM 2003; 626: 247
  • 24 Jursic BS. J. Chem. Soc., Perkin Trans. 2 1996; 1021
    • 25a Ess DH, Houk KN. J. Phys. Chem. A 2005; 109: 9542
    • 25b Ess DH, Houk KN. J. Am. Chem. Soc. 2007; 129: 10646
    • 25c Ess DH, Houk KN. J. Am. Chem. Soc. 2008; 130: 10187
    • 25d Domingo LR, Emamian SR. Tetrahedron 2014; 70: 1267
    • 25e Domingo LR, Aurell MJ, Pérez P. Tetrahedron 2014; 70: 4519
    • 25f Braida B, Walter C, Engels B, Hiberty PC. J. Am. Chem. Soc. 2010; 132: 7631
    • 25g Grimme S, Mück-Lichtenfeld C, Würthwein E.-U, Ehlers AW, Goumans TP. M, Lammertsma K. J. Phys. Chem. A 2006; 110: 2583
    • 25h Freindorf M, Sexton T, Kraka E, Cremer D. Theor. Chem. Acc. 2013; 133: 1423
    • 25i Sexton TM, Freindorf M, Kraka E, Cremer D. J. Phys. Chem. A 2016; 120: 8400
    • 25j Xu L, Doubleday CE, Houk KN. Angew. Chem. Int. Ed. 2009; 48: 2746
    • 25k Su M.-D, Liao H.-Y, Chung W.-S, Chu S.-Y. J. Org. Chem. 1999; 64: 6710
  • 26 Haberhauer G, Gleiter R, Woitschetzki S. J. Org. Chem. 2015; 80: 12321
  • 27 Ledovskaya MS, Polynski MV, Ananikov VP. Chem. Asian J. 2021; 16: 2286
  • 28 Domingo LR, Ríos-Gutiérrez M. Molecules 2017; 22: 750

    • Few selected reviews:
    • 29a Deb T, Tu J, Franzini RM. Chem. Rev. 2021; 121: 6850
    • 29b Roglans A, Pla-Quintana A, Solà M. Chem. Rev. 2021; 121: 1894
    • 29c Yang Z, Jamieson CS, Xue X.-S, Garcia-Borràs M, Benton T, Dong X, Liu F, Houk KN. Trends Chem. 2019; 1: 22
    • 29d Yang Z, Houk KN. Chem. Eur. J. 2018; 24: 3916
    • 29e Kuznetsov ML. Russ. Chem. Rev. 2006; 75: 935
    • 29f Gilmore K, Alabugin IV. Chem. Rev. 2011; 111: 6513
    • 29g Harris T, Alabugin IV. Mendeleev Commun. 2019; 29: 237
    • 29h Mohamed RK, Peterson PW, Alabugin IV. Chem. Rev. 2013; 113: 7089

      Few representative examples:
    • 30a Domingo LR, Kula K, Ríos-Gutiérrez M, Jasiński R. J. Org. Chem. 2021; 86: 12644
    • 30b Dones JM, Abularrage NS, Khanal N, Gold B, Raines RT. J. Am. Chem. Soc. 2021; 143: 9489
    • 30c Guerra C, Ayarde-Henríquez L, Duque-Noreña M, Cárdenas C, Pérez P, Chamorro E. Phys. Chem. Chem. Phys. 2021; 23: 20598
    • 30d Löwe P, Feldt M, Röthel MB, Wilm LF. B, Dielmann F. Inorg. Chem. 2021; 60: 14509
    • 30e Morofuji T, Nagai S, Chitose Y, Abe M, Kano N. Org. Lett. 2021; 23: 6257
    • 30f Svatunek D, Pemberton RP, Mackey JL, Liu P, Houk KN. J. Org. Chem. 2020; 85: 3858
    • 30g Tu J, Svatunek D, Parvez S, Liu AC, Levandowski BJ, Eckvahl HJ, Peterson RT, Houk KN, Franzini RM. Angew. Chem. Int. Ed. 2019; 58: 9043
    • 30h Wang C, Flinn C, Zhao Y. RSC Adv. 2017; 7: 36623
    • 30i Jasiński R, Jasińska E, Dresler E. J. Mol. Model. 2017; 23: 1
    • 30j Löwe P, Feldt M, Wünsche MA, Wilm LF. B, Dielmann F. J. Am. Chem. Soc. 2020; 142: 9818
    • 30k Hallooman D, Ríos-Gutiérrez M, Rhyman L, Alswaidan IA, Domingo LR, Ramasami P. RSC Adv. 2018; 8: 27406
    • 30l Domingo LR, Picher MT, Sáez JA. J. Org. Chem. 2009; 74: 2726
    • 30m Gomez-Bengoa E, Helm MD, Plant A, Harrity JP. A. J. Am. Chem. Soc. 2007; 129: 2691
    • 30n Malamidou-Xenikaki E, Spyroudis S, Tsovaltzi E, Bakalbassis EG. J. Org. Chem. 2016; 81: 2383
    • 30o Motz AR, Herring AM, Vyas S, Maupin CM. J. Org. Chem. 2017; 82: 6578
    • 30p Karas LJ, Campbell AT, Alabugin IV, Wu JI. Org. Lett. 2020; 22: 7083
    • 30q Zeidan TA, Kovalenko SV, Manoharan M, Clark RJ, Ghiviriga I, Alabugin IV. J. Am. Chem. Soc. 2005; 127: 4270
  • 31 Ayarde-Henríquez L, Guerra C, Duque-Noreña M, Rincón E, Pérez P, Chamorro E. J. Phys. Chem. A 2021; 125: 5152
  • 32 Silberrad O, Roy CS. J. Chem. Soc. Trans. 1906; 89: 179
  • 33 Franssen NM. G, Reek JN. H, de Bruin B. Dalton Trans. 2013; 42: 9058
  • 34 Rull S, Olmos A, Perez P. Beilstein J. Org. Chem. 2019; 15: 67
  • 35 Shapiro EA, Kalinin AV, Nefedov OM. Org. Prep. Proced. Int. 1992; 24: 517
  • 36 Yan N, Liu X, Pallerla MK, Fox JM. J. Org. Chem. 2008; 73: 4283
  • 37 Doyle MP. Chem. Rev. 1986; 86: 919
    • 38a Casey CP, Polichnowski SW. J. Am. Chem. Soc. 1977; 99: 6097
    • 38b Casey CP, Polichnowski SW, Shusterman AJ, Jones CR. J. Am. Chem. Soc. 1979; 101: 7282
    • 39a Brookhart M, Nelson GO. J. Am. Chem. Soc. 1977; 99: 6099
    • 39b Brookhart M, Humphrey MB, Kratzer HJ, Nelson GO. J. Am. Chem. Soc. 1980; 102: 7802
  • 40 Liu J, Hu L, Wang L, Chen H, Deng L. J. Am. Chem. Soc. 2017; 139: 3876
  • 41 Vedernikov AN, Caulton KG. Org. Lett. 2003; 5: 2591
  • 42 Moerdyk JP, Bielawski CW. J. Am. Chem. Soc. 2012; 134: 6116
  • 43 Arduengo AJ. III, Calabrese JC, Davidson F, Rasika Dias HV, Goerlich JR, Krafczyk R, Marshall WJ, Tamm M, Schmutzler R. Helv. Chim. Acta 1999; 82: 2348
  • 44 Ohishi J.-i. Synthesis 1980; 690
  • 45 Holzner R, Reiter D, Frisch P, Inoue S. RSC Adv. 2020; 10: 3402
    • 46a Schenck GO, Hartmann W, Mannsfeld S.-P, Metzner W, Krauch CH. Chem. Ber. 1962; 95: 1642
    • 46b Raphael RA. Proc. Chem. Soc. 1962; 97
    • 46c Eaton PE. J. Am. Chem. Soc. 1962; 84: 2454
  • 47 Fructos MR, Prieto A. Tetrahedron 2016; 72: 355
    • 48a Russell SK, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2011; 133: 8858
    • 48b Kennedy CR, Zhong H, Joannou MV, Chirik PJ. Adv. Synth. Catal. 2020; 362: 404
  • 49 Pagar VV, RajanBabu TV. Science 2018; 361: 68
  • 50 Wiesner K. Tetrahedron 1975; 31: 1655
    • 51a Cargill RL, Bryson TA, Krueger LM, Kempf JV, McKenzie TC, Bordner J. J. Org. Chem. 1976; 41: 4096
    • 51b Farwaha R, de Mayo P, Schauble JH, Toong YC. J. Org. Chem. 1985; 50: 245
  • 52 Sunder-Plassmann P, Zderic J, Fried JH. Tetrahedron Lett. 1966; 7: 3451
  • 53 Belluš D, Bredow KV, Sauter H, Weis CD. Helv. Chim. Acta 1973; 56: 3004
  • 54 Belluš D, Rist G. Helv. Chim. Acta 1974; 57: 194
  • 55 Peet NP, Cargill RL. J. Org. Chem. 1973; 38: 4281
    • 56a Kakiuchi K, Ue M, Tsukahara H, Shimizu T, Miyao T, Tobe Y, Odaira Y, Yasuda M, Shima K. J. Am. Chem. Soc. 1989; 111: 3707
    • 56b Paquette LA, Moriarty KJ, Shen C.-C. Isr. J. Chem. 1991; 31: 195
    • 56c Ranu BC, Basu MK. Tetrahedron Lett. 1991; 32: 4177
    • 56d Chakraborty R, Basu MK, Ranu BC. Tetrahedron 1992; 48: 8849
    • 56e Ranu BC, Bhar S, Patra A, Nayak NP, Mukherjee M. Chem. Commun. 1996; 1965
    • 56f Strunz GM, Bethell R, Dumas MT, Boyonoski N. Can. J. Chem. 1997; 75: 742
    • 56g Fietz-Razavian S, Schulz S, Dix I, Jones PG. Chem. Commun. 2001; 2154
    • 57a Seo J, Lee SY, Bielawski CW. Macromolecules 2020; 53: 3202
    • 57b Beaver MG, Zhang E.-x, Liu Z.-q, Zheng S.-y, Wang B, Lu J.-p, Tao J, Gonzalez M, Jones S, Tedrow JS. Org. Process Res. Dev. 2020; 24: 2139
    • 58a Nath A, Ghosh A, Venkateswaran RV. J. Org. Chem. 1992; 57: 1467
    • 58b Nath A, Venkateswaran RV. J. Chem. Soc., Chem. Commun. 1993; 281
  • 59 Jeffrey DA, Cogen JM, Maier WF. J. Org. Chem. 1986; 51: 3206
    • 60a Naito T, Makita Y, Kaneko C. Chem. Lett. 1984; 13: 921
    • 60b Iyoda M, Yamauchi T, Oda M. J. Chem. Soc., Chem. Commun. 1986; 303
  • 61 Guerry P, Neier R. J. Chem. Soc., Chem. Commun. 1989; 1727
  • 62 Bryce-Smith D, Evans EH, Gilbert A, McNeill HS. J. Chem. Soc., Perkin Trans. 1 1992; 485
  • 63 Still IW. J, Kwan MH, Palmer GE. Can. J. Chem. 1968; 46: 3731
  • 64 Matsui T, Nakayama M. Bull. Chem. Soc. Jpn. 1983; 56: 3531
    • 65a Fetizon M, Khac DD, Tho ND. Tetrahedron Lett. 1986; 27: 1777
    • 65b Matsui T, Morooka T, Nakayama M. Bull. Chem. Soc. Jpn. 1987; 60: 417
  • 66 Cavazza M, Guerriero A, Pietra F. J. Chem. Soc., Perkin Trans. 1 1986; 2005
  • 67 Murata I, Sugihara Y, Sugimura T, Wakabayashi S. Tetrahedron 1986; 42: 1745
    • 68a Schrader TO, Snapper ML. J. Am. Chem. Soc. 2002; 124: 10998
    • 68b Shizuka M, Snapper ML. Synthesis 2007; 2397
  • 69 Naito T, Kaneko C. Chem. Pharm. Bull. 1983; 31: 366
  • 70 Oda M, Oikawa H. Tetrahedron Lett. 1980; 21: 107
  • 71 White JD, Matsui T, Thomas JA. J. Org. Chem. 1981; 46: 3376
  • 72 Meyers AI, Fleming SA. J. Am. Chem. Soc. 1986; 108: 306
    • 73a Alibés R, Bourdelande JL, Font J. Tetrahedron Lett. 1994; 35: 2587
    • 73b Hoffmann N, Scharf H.-D. Liebigs Ann. Chem. 1991; 1991: 1273
    • 73c Alibés R, Bourdelande JL, Font J, Gregori A, Parella T. Tetrahedron 1996; 52: 1267
    • 73d de March P, Figueredo M, Font J, Raya J, Alvarez-Larena A, Piniella JF. J. Org. Chem. 2003; 68: 2437
  • 74 Hoffmann N, Scharf H.-D, Runsink J. Tetrahedron Lett. 1989; 30: 2637
  • 75 Poplata S, Bach T. J. Am. Chem. Soc. 2018; 140: 3228
    • 76a Alibés R, de March P, Figueredo M, Font J, Racamonde M. Tetrahedron Lett. 2001; 42: 6695
    • 76b Alibés R, de March P, Figueredo M, Font J, Fu X, Racamonde M, Álvarez-Larena Á, Piniella JF. J. Org. Chem. 2003; 68: 1283
  • 77 Flores R, Rustullet A, Alibés R, Álvarez-Larena A, de March P, Figueredo M, Font J. J. Org. Chem. 2011; 76: 5369
  • 78 Piers E, Orellana A. Synthesis 2001; 2138
    • 79a Alibés R, Bourdelande JL, Font J. Tetrahedron: Asymmetry 1991; 2: 1391
    • 79b Hoffmann N, Buschmann H, Raabe G, Scharf H.-D. Tetrahedron 1994; 50: 11167
    • 79c Curtius FW, Scharf H.-D. Tetrahedron: Asymmetry 1996; 7: 2957
    • 79d Tsutsumi K, Nakano H, Furutani A, Endou K, Merpuge A, Shintani T, Morimoto T, Kakiuchi K. J. Org. Chem. 2004; 69: 785
    • 79e Tsutsumi K, Yanagisawa Y, Furutani A, Morimoto T, Kakiuchi K, Wada T, Mori T, Inoue Y. Chem. Eur. J. 2010; 16: 7448
    • 79f Inhülsen I, Akiyama N, Tsutsumi K, Nishiyama Y, Kakiuchi K. Tetrahedron 2013; 69: 782
  • 80 Nishiyama Y, Shibata M, Ishii T, Morimoto T, Tanimoto H, Tanimoto H, Kakiuchi K. Molecules 2013; 18: 1626
  • 81 Yanagisawa Y, Nishiyama Y, Tanimoto H, Morimoto T, Kakiuchi K. Tetrahedron Lett. 2014; 55: 2123
  • 82 Le Liepvre M, Ollivier J, Aitken DJ. Eur. J. Org. Chem. 2009; 5953
  • 83 Tsujishima H, Nakatani K, Shimamoto K, Shigeri Y, Yumoto N, Ohfune Y. Tetrahedron Lett. 1998; 39: 1193
  • 84 André V, Gras M, Awada H, Guillot R, Robin S, Aitken DJ. Tetrahedron 2013; 69: 3571
  • 85 Gu X, Xian M, Roy-Faure S, Bolte J, Aitken DJ, Gefflaut T. Tetrahedron Lett. 2006; 47: 193
  • 86 Williams JD, Nakano M, Gérardy R, Rincón JA, de Frutos Ó, Mateos C, Monbaliu J.-CM, Kappe CO. Org. Process Res. Dev. 2019; 23: 78
  • 87 Flores R, Alibés R, Figueredo M, Font J. Tetrahedron 2009; 65: 6912
    • 88a Brauman JI, Archie WC. J. Am. Chem. Soc. 1972; 94: 4262
    • 88b Jung ME, Sledeski AW. J. Chem. Soc., Chem. Commun. 1993; 589
    • 88c Baldwin JE, Burrell RC. J. Org. Chem. 2000; 65: 7139
  • 89 Skalenko YA, Druzhenko TV, Denisenko AV, Samoilenko MV, Dacenko OP, Trofymchuk SA, Grygorenko OO, Tolmachev AA, Mykhailiuk PK. J. Org. Chem. 2018; 83: 6275
  • 90 Aitken DJ, Gauzy C, Pereira E. Tetrahedron Lett. 2002; 43: 6177
    • 91a Gauzy C, Pereira E, Faure S, Aitken DJ. Tetrahedron Lett. 2004; 45: 7095
    • 91b Gauzy C, Saby B, Pereira E, Faure S, Aitken DJ. Synlett 2006; 1394
    • 91c Declerck V, Aitken DJ. J. Org. Chem. 2011; 76: 708
    • 91d Roy O, Faure S, Aitken DJ. Tetrahedron Lett. 2006; 47: 5981
    • 91e Fernandes C, Gauzy C, Yang Y, Roy O, Pereira E, Faure S, Aitken DJ. Synthesis 2007; 2222
    • 91f Hassoun A, Grison CM, Guillot R, Boddaert T, Aitken DJ. New J. Chem. 2015; 39: 3270
  • 92 Sabui SK, Venkateswaran RV. Tetrahedron Lett. 2004; 45: 983
  • 93 Parés S, Alibés R, Figueredo M, Font J, Parella T. Eur. J. Org. Chem. 2012; 1404
  • 94 Castañeda MM, Bargues JM, Primo J, Fuertes IN. J. Org. Chem. 2019; 84: 8578
  • 95 André V, Vidal A, Ollivier J, Robin S, Aitken DJ. Tetrahedron Lett. 2011; 52: 1253
  • 96 Kolleth A, Lumbroso A, Tanriver G, Catak S, Sulzer-Mossé S, De Mesmaeker A. Tetrahedron Lett. 2016; 57: 2697
    • 97a Lumbroso A, Catak S, Sulzer-Mossé S, De Mesmaeker A. Tetrahedron Lett. 2014; 55: 5147
    • 97b Lumbroso A, Catak S, Sulzer-Mossé S, De Mesmaeker A. Tetrahedron Lett. 2014; 55: 6721
  • 98 Coffman DD, Barrick PL, Cramer RD, Raasch MS. J. Am. Chem. Soc. 1949; 71: 490
  • 99 Kammermeier S, Herges R, Jones PG. Angew. Chem. Int. Ed. Engl. 1997; 36: 1757
  • 100 Elliott RL, Nicholson NH, Peaker FE, Takle AK, Richardson CM, Tyler JW, White J, Pearson MJ, Eggleston DS, Haltiwanger RC. J. Org. Chem. 1997; 62: 4998
  • 101 Cargill RL, Bushey DF, Dalton JR, Prasad RS, Dyer RD, Bordner J. J. Org. Chem. 1981; 46: 3389
  • 102 Ohkita M, Tsuji T, Suzuki M, Murakami M, Nishida S. J. Org. Chem. 1990; 55: 1506
    • 103a Rodygin KS, Werner G, Kucherov FA, Ananikov VP. Chem. Asian J. 2016; 11: 965
    • 103b Rodygin K, Lotsman K, Ananikov VP. ChemSusChem 2020; 13: 3679
    • 103c Rodygin KS, Ledovskaya MS, Voronin VV, Lotsman KA, Ananikov VP. Eur. J. Org. Chem. 2021; 43
    • 103d Ledovskaya MS, Voronin VV, Rodygin KS, Posvyatenko AV, Egorova KS, Ananikov VP. Synthesis 2019; 51: 3001
    • 103e Rodygin KS, Voronin VV, Ledovskaya MS. Russ. Chem. Bull. 2020; 69: 1401
  • 104 Becker MR, Wearing ER, Schindler CS. Nat. Chem. 2020; 12: 898
  • 105 McCormack PL. Drugs 2011; 71: 2457
  • 106 Maldonado R, Valverde O, Berrendero F. Trends Neurosci. 2006; 29: 225
  • 107 Mesa RA, Yasothan U, Kirkpatrick P. Nat. Rev. Drug Discovery 2012; 11: 103
  • 108 Göres E, Kossowicz J, Schneider HG. Med. Monatsschr. Pharm. 2004; 27: 72
  • 109 Garnock-Jones KP, Keam SJ. Drugs 2009; 69: 567
  • 110 Conlin RT, Kwak Y.-W. J. Organomet. Chem. 1985; 293: 177
  • 111 Albertin G, Antoniutti S, Botter A, Castro J, Giacomello M. Organometallics 2014; 33: 3570
  • 112 Wirschun WG, Al-Soud YA, Nusser KA, Orama O, Maier G.-M, Jochims JC. J. Chem. Soc., Perkin Trans. 1 2000; 4356
  • 113 Yu Y, Chen Y, Huang W, Wu W, Jiang H. J. Org. Chem. 2017; 82: 9479
    • 114a De Sarlo F, Brandi A, Guarna A, Goti A, Corezzi S. Tetrahedron Lett. 1983; 24: 1815
    • 114b de Sarlo F, Guarna A, Brandi A, Goti A. Tetrahedron 1985; 41: 5181
    • 115a Micetich RG. Can. J. Chem. 1970; 48: 467
    • 115b Demina OV, Khodonov AA, Sinauridze EI, Shvets VI, Varfolomeev SD. Russ. Chem. Bull. 2014; 63: 2092
    • 115c Nakamura T, Sato M, Kakinuma H, Miyata N, Taniguchi K, Bando K, Koda A, Kameo K. J. Med. Chem. 2003; 46: 5416
    • 115d He Z, Ren T, Li Y, Fang X. J. Chem. Crystallogr. 2015; 45: 419
    • 115e Kai H, Tomida M, Nakai T, Takase A. Heterocycles 2002; 57: 2299
  • 116 Bal G, Van der Veken P, Antonov D, Lambeir A.-M, Grellier P, Croft SL, Augustyns K, Haemers A. Bioorg. Med. Chem. Lett. 2003; 13: 2875
  • 117 Perzanowski HP, Al-Jaroudi SS, Wazeer MI. M, Ali SA. Tetrahedron 1997; 53: 11869
    • 118a Vasella A, Voeffray R, Pless J, Huguenin R. Helv. Chim. Acta 1983; 66: 1241
    • 118b Vasella A, Voeffray R. J. Chem. Soc., Chem. Commun. 1981; 97
  • 119 Winterfeldt E, Krohn W, Stracke H.-U. Chem. Ber. 1969; 102: 2346
  • 120 Van der Veken P, Fülöp V, Rea D, Gerard M, Van Elzen R, Joossens J, Cheng JD, Baekelandt V, De Meester I, Lambeir A.-M, Augustyns K. J. Med. Chem. 2012; 55: 9856
  • 121 Gundeti S, Lee J, Park H. Bull. Korean Chem. Soc. 2016; 37: 1156
  • 122 Wu L, Yan B, Yang G, Chen Y. Heterocycl. Commun. 2013; 19: 397
  • 123 Hoff K, Mielniczuk S, Agoglitta O, Iorio MT, Caldara M, Bülbül EF, Melesina J, Sippl W, Holl R. Bioorg. Med. Chem. 2020; 28: 115529
    • 124a Wu Y, Shi C, Sun X, Wu X, Sun H. Bioorg. Med. Chem. 2011; 19: 4238
    • 124b Parasar D, Ponduru TT, Noonikara-Poyil A, Jayaratna NB, Dias HV. R. Dalton Trans. 2019; 48: 15782
  • 125 Matake R, Niwa Y, Matsubara H. Org. Lett. 2015; 17: 2354
  • 126 Jiang Y, Kuang C, Yang Q. Synlett 2009; 3163
  • 127 Yang Q, Jiang Y, Kuang C. Helv. Chim. Acta 2012; 95: 448
  • 128 Zhou C, Zhang J, Liu P, Xie J, Dai B. RSC Adv. 2015; 5: 6661
  • 129 Díaz Velázquez H, Ruiz García Y, Vandichel M, Madder A, Verpoort F. Org. Biomol. Chem. 2014; 12: 9350
  • 130 Avula VK. R, Vallela S, Anireddy JS, Chamarthi NR. J. Heterocycl. Chem. 2017; 54: 3071
  • 131 Kusanur RA, Kulkarni MV, Kulkarni GM, Nayak SK, Guru Row TN, Ganesan K, Sun C.-M. J. Heterocycl. Chem. 2010; 47: 91
  • 132 Brahma K, Achari B, Chowdhury C. Synthesis 2013; 45: 545
  • 133 Gillies JZ, Gillies CW, Suenram RD, Lovas FJ. J. Am. Chem. Soc. 1988; 110: 7991
  • 134 Zefirov NS, Zhdankin VV, Dan’kov YV, Sorokin VD, Semerikov VN, Koz’min AS, Caple R, Berglund BA. Tetrahedron Lett. 1986; 27: 3971
  • 135 Rowley D, Steiner H. Discuss. Faraday Soc. 1951; 10: 198
  • 136 Fort EH, Jeffreys MS, Scott LT. Chem. Commun. 2012; 48: 8102
  • 137 Schroeter K, Schalley CA, Wesendrup R, Schröder D, Schwarz H. Organometallics 1997; 16: 986
  • 138 Murakami M, Ubukata M, Itami K, Ito Y. Angew. Chem. Int. Ed. 1998; 37: 2248
  • 139 Duan IF, Cheng C.-H, Shaw J.-S, Cheng S.-S, Liou KF. J. Chem. Soc., Chem. Commun. 1991; 1347
    • 140a Teixeira IF, Lo BT. W, Kostetskyy P, Ye L, Tang CC, Mpourmpakis G, Tsang SC. E. ACS Catal. 2018; 8: 1843
    • 140b Song S, Wu G, Dai W, Guan N, Li L. J. Mol. Catal. A.: Chem. 2016; 420: 134
    • 140c Chang C.-C, Green SK, Williams CL, Dauenhauer PJ, Fan W. Green Chem. 2014; 16: 585
    • 140d Koehle M, Saraçi E, Dauenhauer P, Lobo RF. ChemSusChem 2017; 10: 91
    • 140e Cho HJ, Ren L, Vattipalli V, Yeh Y.-H, Gould N, Xu B, Gorte RJ, Lobo R, Dauenhauer PJ, Tsapatsis M, Fan W. ChemCatChem 2017; 9: 398
    • 140f Tao L, Yan T.-H, Li W, Zhao Y, Zhang Q, Liu Y.-M, Wright MM, Li Z.-H, He H.-Y, Cao Y. Chem 2018; 4: 2212
    • 140g Zhao R, Zhao Z, Li S, Parvulescu A.-N, Müller U, Zhang W. ChemSusChem 2018; 11: 3803
    • 140h Chang C.-C, Je Cho H, Yu J, Gorte RJ, Gulbinski J, Dauenhauer P, Fan W. Green Chem. 2016; 18: 1368
    • 140i Williams CL, Chang C.-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ. ACS Catal. 2012; 2: 935
  • 141 Uyehara T, Yamada J.-i, Kato T, Bohlmann F. Tetrahedron Lett. 1983; 24: 4445
  • 142 Saraçi E, Wang L, Theopold KH, Lobo RF. ChemSusChem 2018; 11: 773
    • 143a Pfennig T, Carraher JM, Chemburkar A, Johnson RL, Anderson AT, Tessonnier J.-P, Neurock M, Shanks BH. Green Chem. 2017; 19: 4879
    • 143b Carraher JM, Carter P, Rao RG, Forrester MJ, Pfennig T, Shanks BH, Cochran EW, Tessonnier J.-P. Green Chem. 2020; 22: 6444
  • 144 Grimme W, Wortmann J, Frowein D, Lex J, Chen G, Gleiter R. J. Chem. Soc., Perkin Trans. 2 1998; 1893
  • 145 Golden R, Stock LM. J. Am. Chem. Soc. 1972; 94: 3080
    • 146a Sauer J, Heldmann DK, Hetzenegger J, Krauthan J, Sichert H, Schuster J. Eur. J. Org. Chem. 1998; 2885
    • 146b Share AI, Parimal K, Flood AH. J. Am. Chem. Soc. 2010; 132: 1665
    • 146c Kagalwala HN, Deshmukh MS, Ramasamy E, Nair N, Zhou R, Zong R, McCormik L, Chen P.-A, Thummel RP. Inorg. Chem. 2021; 60: 1806
  • 147 Vasil’ev NV, Lyashenko YE, Galakhov MV, Kolomiets AF, Gontar AF, Sokol’skii GA. Chem. Heterocycl. Compd. 1990; 26: 81
  • 148 Sugahara T, Sasamori T, Tokitoh N. J. Am. Chem. Soc. 2018; 140: 11206
    • 149a Alen J, Smets WJ, Dobrzańska L, De Borggraeve WM, Compernolle F, Hoornaert GJ. Eur. J. Org. Chem. 2007; 965
    • 149b Pawar VG, De Borggraeve WM, Maes V, Tourwé DA, Compernolle F, Hoornaert GJ. Tetrahedron Lett. 2005; 46: 1707
    • 150a Peters C, Disteldorf H, Fuchs E, Werner S, Stutzmann S, Bruckmann J, Krüger C, Binger P, Heydt H, Regitz M. Eur. J. Org. Chem. 2001; 3425
    • 150b Peters C, Stutzmann S, Disteldorf H, Werner S, Bergsträßer U, Krüger C, Binger P, Regitz M. Synthesis 2000; 529
  • 151 Riu M.-LY, Cummins CC. J. Org. Chem. 2020; 85: 14810
  • 152 Papavassiliou GC, Mousdis GA, Papadima A. Z. Naturforsch. B 2000; 55: 231
  • 153 Pauson PL, Khand IU. Ann. N. Y. Acad. Sci. 1977; 295: 2
    • 154a Schore NE, La Belle BE, Knudsen MJ, Hope H, Xu XJ. J. Organomet. Chem. 1984; 272: 435
    • 154b Magnus P, Principe LM. Tetrahedron Lett. 1985; 26: 4851
    • 155a Kowalczyk BA, Smith TC, Dauben WG. J. Org. Chem. 1998; 63: 1379
    • 155b Sampath V, Lund EC, Knudsen MJ, Olmstead MM, Schore NE. J. Org. Chem. 1987; 52: 3595
  • 156 La Belle BE, Knudsen MJ, Olmstead MM, Hope H, Yanuck MD, Schore NE. J. Org. Chem. 1985; 50: 5215
  • 157 Kim JW, Chung YK. Synthesis 1998; 142
  • 158 Lee NY, Chung YK. Tetrahedron Lett. 1996; 37: 3145
  • 159 Iqbal M, Vyse N, Dauvergne J, Evans P. Tetrahedron Lett. 2002; 43: 7859
    • 160a Rodygin KS, Ananikov VP. Green Chem. 2016; 18: 482
    • 160b Rodygin KS, Bogachenkov AS, Ananikov VP. Molecules 2018; 23: 648
    • 160c Rodygin KS, Werner I, Ananikov VP. ChemSusChem 2018; 11: 292
    • 160d Voronin VV, Ledovskaya MS, Rodygin KS, Ananikov VP. Org. Chem. Front. 2020; 7: 1334
  • 161 Antras F, Laurent S, Ahmar M, Chermette H, Cazes B. Eur. J. Org. Chem. 2010; 3312
  • 162 Aiguabella N, Arce EM, Del Pozo C, Verdaguer X, Riera A. Molecules 2014; 19: 1763
  • 163 Lebold TP, Carson CA, Kerr MA. Synlett 2006; 364
  • 165 Berthelot M. Justus Liebigs Ann. Chem. 1867; 141: 173
  • 166 Reppe W, Schweckendieck J. Justus Liebigs Ann. Chem. 1948; 560: 104
  • 167 Reppe W, Schlichting O, Klager K, Toepel T. Justus Liebigs Ann. Chem. 1948; 560: 1
  • 168 Schore NE. Chem. Rev. 1988; 88: 1081
  • 169 Grobe J, Schneider BH, Zimmermann H. Z. Naturforsch. B 1984; 39: 957
  • 170 Bertolini J.-C, Massardier J, Dalmai-Imelik G. J. Chem. Soc., Faraday Trans. 1 1978; 74: 1720
  • 171 Vollhardt KP. C. Acc. Chem. Res. 1977; 10: 1
  • 172 Jonas K, Deffense E, Habermann D. Angew. Chem., Int. Ed. Engl 1983; 22: 716
  • 173 Blomquist AT, Maitlis PM. J. Am. Chem. Soc. 1962; 84: 2329
    • 174a Rucker TG, Logan MA, Gentle TM, Muetterties EL, Somorjai GA. J. Phys. Chem. 1986; 90: 2703
    • 174b Logan MA, Rucker TG, Gentle TM, Muetterties EL, Somorjai GA. J. Phys. Chem. 1986; 90: 2709
    • 174c Tysoe WT, Nyberg GL, Lambert RM. J. Chem. Soc., Chem. Commun. 1983; 623
  • 175 Avery NR. J. Am. Chem. Soc. 1985; 107: 6711
  • 176 Yang J, Verkade JG. J. Am. Chem. Soc. 1998; 120: 6834
    • 177a Shirakawa H, Ikeda S. J. Polym. Sci., Part A: Polym. Chem. 1974; 12: 929
    • 177b Imamura H, Miura H, Konishi T. Chem. Lett. 1990; 19: 1495
    • 177c Bianchini C, Caulton KG, Chardon C, Doublet M.-L, Eisenstein O, Jackson SA, Johnson TJ, Meli A, Peruzzini M. Organometallics 1994; 13: 2010
    • 177d Karpiniec SS, McGuinness DS, Britovsek GJ. P, Patel J. Organometallics 2012; 31: 3439
    • 177e Silvestri AP, Oakdale JS. Chem. Commun. 2020; 56: 13417
  • 178 Iwayama T, Sato Y. Heterocycles 2010; 80: 917
  • 179 McDonald FE, Smolentsev V. Org. Lett. 2002; 4: 745
  • 180 Witulski B, Alayrac C. Angew. Chem. Int. Ed. 2002; 41: 3281
  • 181 Eichberg MJ, Dorta RL, Lamottke K, Vollhardt KP. C. Org. Lett. 2000; 2: 2479
  • 182 Williams VM, Kong JR, Ko BJ, Mantri Y, Brodbelt JS, Baik M.-H, Krische MJ. J. Am. Chem. Soc. 2009; 131: 16054
  • 183 Gandon V, Leboeuf D, Amslinger S, Vollhardt KP. C, Malacria M, Aubert C. Angew. Chem. Int. Ed. 2005; 44: 7114
    • 185a Heller B, Sundermann B, Buschmann H, Drexler H.-J, You J, Holzgrabe U, Heller E, Oehme G. J. Org. Chem. 2002; 67: 4414
    • 185b Heller B, Oehme G. J. Chem. Soc., Chem. Commun. 1995; 179
    • 185c Heller B, Sundermann B, Fischer C, You J, Chen W, Drexler H.-J, Knochel P, Bonrath W, Gutnov A. J. Org. Chem. 2003; 68: 9221
    • 185d Chelucci G. Synth. Commun. 1992; 22: 2645
    • 185e Chelucci G, Cabras MA, Saba A. J. Heterocycl. Chem. 1994; 31: 1289
    • 186a Wakatsuki Y, Yamazaki H. Synthesis 1976; 26
    • 186b Bönnemann H, Brijoux W, Brinkmann R, Meurers W. Helv. Chim. Acta 1984; 67: 1616
    • 186c Schulz W, Pracejus H, Oehme G. Tetrahedron Lett. 1989; 30: 1229
    • 186d Bönnemann H. Angew. Chem., Int. Ed. Engl 1978; 17: 505
    • 187a Richardson MB, Smith DG. M, Williams SJ. Chem. Commun. 2017; 53: 1100
    • 187b Singleton DA, Hang C. J. Org. Chem. 2000; 65: 895
    • 188a Chung M.-T, Trueman CN, Godiksen JA, Holmstrup ME, Grønkjær P. Commun. Biol. 2019; 2: 24
    • 188b Reyes AC, Amyes TL, Richard JP. Biochemistry 2018; 57: 4338
    • 188c Tominski C, Lösekann-Behrens T, Ruecker A, Hagemann N, Kleindienst S, Mueller CW, Höschen C, Kögel-Knabner I, Kappler A, Behrens S. Appl. Environ. Microbiol. 2018; 84: e02166
  • 189 Whitman DW, Carpenter BK. J. Am. Chem. Soc. 1980; 102: 4272
  • 190 Kawase T, Okada T, Enomoto T, Kikuchi T, Miyake Y, Oda M. Bull. Chem. Soc. Jpn. 2003; 76: 1793
  • 191 Arnold BR, Michl J. J. Phys. Chem. 1993; 97: 13348
    • 192a Rabinovitch BS, Tschuikow-Roux E, Schlag EW. J. Am. Chem. Soc. 1959; 81: 1081
    • 192b Houk KN, Firestone RA, Munchausen LL, Mueller PH, Arison BH, Garcia LA. J. Am. Chem. Soc. 1985; 107: 7227
    • 192c Houk KN, Lin YT, Brown FK. J. Am. Chem. Soc. 1986; 108: 554
    • 192d Bartlett PD, Cohen GM, Elliott SP, Hummel K, Minns RA, Sharts CM, Fukunaga JY. J. Am. Chem. Soc. 1972; 94: 2899
  • 193 Woodward RB, Hoffmann R. Angew. Chem., Int. Ed. Engl 1969; 8: 781
  • 194 Kolleth A, Lumbroso A, Tanriver G, Catak S, Sulzer-Mossé S, De Mesmaeker A. Tetrahedron Lett. 2016; 57: 3510