Synthesis 2022; 54(04): 1115-1124
DOI: 10.1055/a-1667-3977
feature

Copper-Catalyzed Oxidative Cyclization of 2-Aminobenzamide Derivatives: Efficient Syntheses of Quinazolinones and Indazolones

Karthick Govindan
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
,
Tamilselvan Duraisamy
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
,
Alageswaran Jayaram
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
,
Gopal Chandru Senadi
b   Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology, Kattankulathur, Tamilnadu – 603203, India
,
Wei-Yu Lin
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
c   Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC
d   Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
› Author Affiliations
The authors gratefully acknowledge funding from the Ministry of Science and Technology, Taiwan (MOST 109-2113-M-037-013) and Kaohsiung Medical University Research Foundation (KMU-M109004).


Abstract

A simple copper-catalyzed assembly to formulate quinazolinone and indazolone derivatives in a single protocol manner is reported. These transformations are based on the fact that DMF can serve as a reaction solvent and one carbon synthon for the construction of heterocyclic rings. Moreover, this protocol features base-free and Brønsted acid free environmentally benign conditions with broad synthetic scope. A good scalability is demonstrated.

Supporting Information



Publication History

Received: 13 July 2021

Accepted after revision: 12 October 2021

Accepted Manuscript online:
12 October 2021

Article published online:
17 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Shanks BH, Keeling PL. Green Chem. 2017; 19: 3177
    • 1b Gillet S, Aguedo M, Petitjean L, Morais AR. C, Lopes AM. D, Lukasik RM, Anastas PT. Green Chem. 2017; 19: 4200
    • 1c Santoro S, Ferlin F, Luciani L, Ackermann L, Vaccaro L. Green Chem. 2017; 19: 1601
    • 2a Heravi MM, Ghavidel M, Mohammadkhani L. RSC Adv. 2018; 8: 27832
    • 2b Ding ST, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226
    • 3a Jones-Mensah E, Karki M, Magolan J. Synthesis 2016; 48: 1421
    • 3b Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Adv. Synth. Catal. 2020; 362: 65
    • 3c Zhang Y, Kuang JQ, Xiao XQ, Wang L, Ma YM. Org. Lett. 2021; 23: 3960
    • 4a Liu WB, Yang XB, Zhou ZZ, Li CJ. Chem 2017; 2: 688
    • 4b Chakraborty S, Gellrich U, Diskin-Posner Y, Leitus G, Avram L, Milstein D. Angew. Chem. Int. Ed. 2017; 56: 4229
    • 5a Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 5b Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
    • 5c Khan I, Ibrar A, Ahmed W, Saeed A. Eur. J. Med. Chem. 2015; 90: 124
  • 7 Jiang SP, Zeng Q, Gettayacamin M, Tungtaeng A, Wannaying S, Lim A, Hansukjariya P, Okunji CO, Zhu SR, Fang DH. Antimicrob. Agents Chemother. 2005; 49: 1169
  • 8 McLaughlin NP, Evans P, Pines M. Bioorg. Med. Chem. 2014; 22: 1993
    • 9a Montero-Torres A, Vega MC, Marrero-Ponce Y, Rolon M, Gomez-Barrio A, Escario JA, Aran VJ, Martinez-Fernandez AR, Meneses-Marcel A. Bioorg. Med. Chem. 2005; 13: 6264
    • 9b Vega MC, Rolon M, Montero-Torres A, Fonseca-Berzal C, Escario JA, Gomez-Barrio A, Galvez J, Marrero-Ponce Y, Aran VJ. Eur. J. Med. Chem. 2012; 58: 214
  • 10 Chen XL, Chen TQ, Zhou YB, Han DQ, Han LB, Yin SF. Org. Biomol. Chem. 2014; 12: 3802
  • 11 Aridoss G, Laali KK. Eur. J. Org. Chem. 2011; 2827
  • 12 Bao YJ, Yan YZ, Xu K, Su JH, Zha ZG, Wang ZY. J. Org. Chem. 2015; 80: 4736
  • 13 Sharma S, Bhattacherjee D, Das P. Org. Biomol. Chem. 2018; 16: 1337
  • 14 Li F, Lu L, Liu PC. Org. Lett. 2016; 18: 2580
  • 15 Cao L, Huo HR, Zeng HP, Yu Y, Lu DF, Gong YF. Adv. Synth. Catal. 2018; 360: 4764
  • 16 Senadi GC, Kudale VS, Wang JJ. Green Chem. 2019; 21: 979
  • 17 Zhao D, Wang T, Li JX. Chem. Commun. 2014; 50: 6471
  • 18 Jacquet O, Gomes CD, Ephritikhine M, Cantat T. ChemCatChem 2013; 5: 117
  • 19 Ma B, Wang Y, Peng JL, Zhu Q. J. Org. Chem. 2011; 76: 6362
  • 20 Yu WJ, Zhang XW, Qin BJ, Wang QY, Ren XH, He XH. Green Chem. 2018; 20: 2449
    • 21a Kerdphon S, Sanghong P, Chatwichien J, Choommongkol V, Rithchumpon P, Singh T, Meepowpan P. Eur. J. Org. Chem. 2020; 2730
    • 21b Reddy MB, Prasanth K, Anandhan R. Org. Biomol. Chem. 2020; 18: 9601
  • 22 Philips A, Raja D, Arumugam A, Lin W.-Y, Chandru Senadi G. Asian J. Org. Chem. 2021; 10: 1795
    • 23a Zhao M.-N, Hui R.-R, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Org. Lett. 2014; 16: 3082
    • 23b Weng Y, Zhou H, Sun C, Xie Y, Su W. J. Org. Chem. 2017; 82: 9047
    • 23c Lv Y, Li Y, Xiong T, Pu W, Zhang H, Sun K, Liu Q, Zhang Q. Chem. Commun. 2013; 49: 6439
    • 24a Wang F, Wu W, Xu X, Shao X, Li Z. Tetrahedron Lett. 2018; 59: 2506
    • 24b Wang JB, Li YL, Deng J. Adv. Synth. Catal. 2017; 359: 3460
    • 24c Zhao D, Wang T, Li J.-X. Chem. Commun. 2014; 50: 6471
    • 24d Xu X, Zhang M, Jiang H, Zheng J, Li Y. Org. Lett. 2014; 16: 3540
  • 25 Xia HM, Zhang FL, Ye T, Wang YF. Angew. Chem. Int. Ed. 2018; 57: 11770
  • 26 Tan Z, Li Z, Ma Y, Qin J, Yu C. Eur. J. Org. Chem. 2019; 4538
    • 27a Wan YQ, Alterman M, Larhed M, Hallberg A. J. Org. Chem. 2002; 67: 6232
    • 27b Yan Y, Yuan Y, Jiao N. Org. Chem. Front. 2014; 1: 1176
  • 28 Kodimuthali A, Mungara A, Prasunamba PL, Pal M. J. Braz. Chem. Soc. 2010; 21: 1439
    • 29a Liu W, Chen C, Liu H. Beilstein J. Org. Chem. 2015; 11: 1721
    • 29b Xie D, He W, Xiao J, Wu Y, Guo Y, Liu Q, Guo C. RSC Adv. 2019; 9: 7203
  • 30 Wu X.-F. Solvents as Reagents in Organic Synthesis: Reactions and Applications. Wiley-VCH; Weinheim: 2017
  • 31 Ganesan B, Senadi GC, Guo B.-C, Hung M.-Y, Lin W.-Y. RSC Adv. 2018; 8: 40968
  • 32 Ganesan B, Govindan K, Senadi GC, Kandasamy M, Lin W.-Y. Chem. Commun. 2020; 56: 6488
    • 33a Clemenceau A, Wang Q, Zhu JP. Org. Lett. 2017; 19: 4872
    • 33b Punthasee P, Vanitcha A, Wacharasindhu S. Tetrahedron Lett. 2010; 51: 1713
  • 34 Dai G, Yang L, Zhou W. Org. Chem. Front. 2017; 4: 229
  • 35 Li SJ, Lan Y. Chem. Commun. 2020; 56: 6609
  • 36 Mukhopadhyay S, Barak DS, Batra S. Eur. J. Org. Chem. 2018; 2784
  • 37 Zeng LY, Cai C. J. Heterocycl. Chem. 2010; 47: 1035
  • 38 Kumar D, Jadhavar PS, Nautiyal M, Sharma H, Meena PK, Adane L, Pancholia S, Chakraborti AK. RSC Adv. 2015; 5: 30819
  • 39 Punthasee P, Vanitcha A, Wacharasindhu S. Tetrahedron Lett. 2010; 51: 1713
  • 40 Deau E, Hédou D, Chosson E, Levacher V, Besson T. Tetrahedron Lett. 2013; 54: 3518
  • 41 He L, Sharif M, Neumann H, Beller M, Wu X.-F. Green Chem. 2014; 16: 3763
  • 42 Senadi GC, Kudale VS, Wang J.-J. Green Chem. 2019; 21: 979
  • 43 Kumar D, Vemula SR, Cook GR. Green Chem. 2015; 17: 4300
  • 44 Park SW, Choi H, Lee J.-h, Lee Y.-J, Ku J.-M, Lee SY, Nam T.-g. Arch. Pharm. Res. 2016; 39: 302
  • 45 Correa A, Tellitu I, Domínguez E, SanMartin R. J. Org. Chem. 2006; 71: 3501