Synthesis 2022; 54(05): 1301-1308
DOI: 10.1055/a-1668-9694
feature

Azide Decomposition as a Pathway to Intramolecularly Upper-Rim-Bridged Calix[4]arenes

Martin Tlustý
a   Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
,
Václav Eigner
b   Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
,
Pavel Lhoták
a   Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
› Author Affiliations
This research was supported by the Grantová Agentura České Republiky (Czech Science Foundation; Grant No. 20-07833S). Financial support from Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sport of the Czech Republic; Grant Nos. A2 FCHT 2021 021 and A1 FCHT 2021 008) is also acknowledged.


Abstract

Proximally single-atom-bridged calix[4]arenes possess a rigidified cavity and, thus, unusual complexation properties. Here, we report on the synthesis of the first such heteroatom-bridged compound: amine-bridged calix[4]arene. This compound, prepared by thermal decomposition of 4-azidocalix[4]arene, was obtained alongside very interesting rearranged, inherently chiral 10H-azepino[1,2-a]indole derivatives. NMR titration confirmed the suitability of the amine cavity for the complexation of methylammonium cations; moreover, the –NH– bridge function enables its further derivatization.

Supporting Information



Publication History

Received: 21 September 2021

Accepted after revision: 14 October 2021

Accepted Manuscript online:
14 October 2021

Article published online:
06 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected books on calixarenes and their applications, see:
    • 1a Calixarenes and Beyond . Neri P, Sessler JL, Wang M.-X. Springer International Publishing Switzerland; Basel: 2016
    • 1b Gutsche CD. Calixarenes: An Introduction, 2nd ed. The Royal Society of Chemistry; Cambridge: 2008
    • 1c Calixarenes in the Nanoworld . Vicens J, Harrowfield J, Backlouti L. Springer; Dordrecht: 2007
    • 1d Calixarenes 2001 . Asfari Z, Böhmer V, Harrowfield J, Vicens J. Kluwer; Dordrecht: 2001
    • 1e Mandolini L, Ungaro R. Calixarenes in Action . Imperial College Press; London: 2000

      For selected reviews on various calixarene-based receptors, see:
    • 2a Siddiqui S, Cragg PJ. Mini-Rev. Org. Chem. 2009; 6: 283
    • 2b Leray I, Valeur B. Eur. J. Inorg. Chem. 2009; 3525
    • 2c Matthews SE, Beer PD. In Calixarenes 2001 . Asfari Z, Böhmer V, Harrowfield J, Vicens J. Kluwer; Dordrecht: 2001: 421
    • 2d Lhoták P. Curr. Chem. 2005; 255: 65
    • 2e Coquiere D, Le Gac S, Darbost U, Seneque O, Jabin I, Reinaud O. Org. Biomol. Chem. 2009; 7: 2485
    • 2f Lhotak P, Kundrat O. In Artificial Receptors for Chemical Sensors . Mirsky V, Yatsimirsky A. Wiley-VCH; Weinheim: 2011: 249
  • 3 Arduini A, McGregor WM, Paganuzzi D, Pochini A, Secchi A, Ugozzoli F, Ungaro R. J. Chem. Soc., Perkin Trans. 2 1996; 839
  • 4 Arduini A, Fabbi M, Mantovani M, Mirone L, Pochini A, Ungaro R. J. Org. Chem. 1995; 60: 1454
  • 5 Lhoták P, Zieba R, Hromádko V, Stibor I, Sykora J. Tetrahedron Lett. 2003; 44: 4519
  • 6 Zeng CC, Yuan HS, Huang ZT. Chin. J. Chem. 2002; 20: 795
  • 7 Casnati A, Fabbi M, Pelizzi N, Pochini A, Sansone F, Ungaro R, DiModugno E, Tarzia G. Bioorg. Med. Chem. Lett. 1996; 6: 2699
  • 8 Flídrová K, Slavík P, Eigner V, Dvořáková H, Lhoták P. Chem. Commun. 2013; 49: 6749
    • 9a Tlustý M, Slavík P, Kohout M, Eigner V, Lhoták P. Org. Lett. 2017; 19: 2933
    • 9b Tlustý M, Eigner V, Babor M, Kohout M, Lhoták P. RSC Adv. 2019; 9: 22017
    • 9c Tlustý M, Spálovská D, Kohout M, Eigner V, Lhoták P. Chem. Commun. 2020; 56: 12773

      Recently, other types of interesting rigid systems have been reported:
    • 10a Zhang F, Du X.-S, Zhang D.-W, Wang Y.-F, Lu H.-Y, Chen C.-F. Angew. Chem. Int. Ed. 2021; 60: 15291
    • 10b Shi T.-H, Tong S, Wang M.-X. Angew. Chem. Int. Ed. 2020; 59: 7700
    • 10c Shi T.-H, Guo Q.-H, Tong S, Wang M.-X. J. Am. Chem. Soc. 2020; 142: 4576
    • 10d Guo S.-Y, Guo Q.-H, Tong S, Wang M.-X. Angew. Chem. Int. Ed. 2020; 59: 8078
    • 11a Slavík P, Eigner V, Lhoták P. Org. Lett. 2015; 17: 2788
    • 11b Slavík P, Dvořáková H, Eigner V, Lhoták P. New J. Chem. 2017; 41: 14738
    • 11c Slavík P, Eigner V, Lhoták P. New J. Chem. 2018; 42: 16646
  • 12 Slavík P, Dudič M, Flídrová K, Sýkora J, Císařová I, Böhm S, Lhoták P. Org. Lett. 2012; 14: 3628
  • 13 Liška A, Flídrová K, Lhoták P, Ludvík J. Monatsh. Chem. 2015; 146: 857
  • 14 Carde RN, Jones G, McKinley WH, Price C. J. Chem. Soc., Perkin Trans. 1 1978; 1211
  • 15 Ullah E, McNulty J, Robertson A. Eur. J. Org. Chem. 2012; 2127
  • 16 Takeuchi H, Maeda M, Mitani M, Koyama K. J. Chem. Soc., Chem. Commun. 1985; 287
  • 17 The binding constants were calculated using the Bindfit application freely available at: http://supramolecular.org
  • 18 For a review on inherently chiral systems, see: Szumna A. Chem. Soc. Rev. 2010; 39: 4274
  • 19 Slavík P, Krupička M, Eigner V, Vrzal L, Dvořáková H, Lhoták P. J. Org. Chem. 2019; 84: 4229