Synthesis 2022; 54(17): 3801-3808
DOI: 10.1055/a-1689-3626
special topic
Special Issue in memory of Prof. Ferenc Fülöp

On the Synthesis of a Novel Chiral Phosphorodiamidic Acid Containing­ the α-Phenylethyl Moiety: Insights on its Conformation and Reactivity

Carlos Cruz-Hernández
a   Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN No. 2508, 07360 Ciudad de México, México
,
Eusebio Juaristi
a   Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN No. 2508, 07360 Ciudad de México, México
b   El Colegio Nacional, Luis González Obregón No. 23, Centro Histórico, 06020 Ciudad de México, México
› Author Affiliations
We are grateful to Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) for financial support via grants 220945, 3240029 and A1-S-44097. We are also grateful to the SEP-CINVESTAV Fund via grant 126.


Dedicated to the memory of Professor Ferenc Fülöp, friend and colleague

Abstract

A few years ago, the synthesis of chiral phosphoric acids supported on chiral BINOL frameworks was accomplished by T. Akiyama and M. Terada. Subsequent relevant applications demonstrated the importance of chiral phosphoric acids as privileged chiral inducers in asymmetric organocatalysis. In the present report, we discuss the development of novel chiral phosphorodiamidic acids derived from C 2-symmetric trans-1,2-diaminocyclohexane aliphatic frameworks. The preparation of the new chiral Brønsted acids, based on the intermediacy of a 1,3,2-diheterophospholan-2-oxide moiety, turned out to be challenging since several plausible synthetic methodologies proved to be ineffective. Furthermore, the five-membered heterocyclic moiety turned out to be easily hydrolyzed when exposed to nucleophilic alcohols or water. Complementary to the successful multistep synthesis reported here, it was possible to obtain crystals of the key precursor of the desired phosphorodiamidic acid, which proved suitable for X-ray diffraction analysis and hence to establish important conformational characteristics of the novel heterocycle.

Supporting Information



Publication History

Received: 19 September 2021

Accepted after revision: 08 November 2021

Accepted Manuscript online:
08 November 2021

Article published online:
12 January 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 1b Kampen D, Reisinger CM, List B. Top. Curr. Chem. 2009; 291: 1
    • 1c Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
    • 1d Min C, Seidel D. Chem. Soc. Rev. 2017; 46: 5889
    • 1e Rahman A, Lin X. Org. Biomol. Chem. 2018; 16: 4753
    • 1f Oliveira V. dG, Cardoso MF. d. C, Forezi L. dS. M. Catalysts 2018; 8: 605
    • 1g Sinibaldi A, Nori V, Baschieri A, Fini F, Arcadi A, Carlone A. Catalysts 2019; 9: 928
    • 2a Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
    • 2b Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 3a Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 3b Nagorny P, Sun Z. Beilstein J. Org. Chem. 2016; 12: 2834
    • 4a Huang Y, Unni AK, Thadani AN, Rawal VH. Nature 2003; 424: 146
    • 4b Braddock DC, MacGilp ID, Perry BG. Adv. Synth. Catal. 2004; 346: 1117
    • 4c Du H, Zhao D, Ding K. Chem. Eur. J. 2004; 10: 5964
    • 4d Unni AK, Takenaka N, Yamamoto H, Rawal VH. J. Am. Chem. Soc. 2005; 127: 1336
    • 4e Matsui K, Takizawa S, Sasai H. J. Am. Chem. Soc. 2005; 127: 3680
    • 5a Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
    • 5b Hernández-Rodríguez M, Juaristi E. Tetrahedron 2007; 63: 7673
    • 6a Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
    • 6b Chauchan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
    • 7a Christ P, Lindsay AG, Vormittag SS, Neudörfl J.-M, Berkessel A, O’Donoghue AC. Chem. Eur. J. 2011; 17: 8524
    • 7b Kaupmees K, Tolstoluzhsky N, Raja S, Rueping M, Leito I. Angew. Chem. Int. Ed. 2013; 52: 11569
    • 7c Yang C, Xue X.-S, Jin J.-L, Li X, Cheng J.-P. J. Org. Chem. 2013; 78: 7076
    • 7d Yang C, Xue X.-S, Li X, Cheng J.-P. J. Org. Chem. 2014; 79: 4340
    • 10a Akiyama T, Saitoh Y, Morita H, Fuchibe K. Adv. Synth. Catal. 2005; 347: 1523
    • 10b Rowland GB, Zhang H, Rowland EB, Chenamadhavuni S, Wang Y, Antilla JC. J. Am. Chem. Soc. 2005; 127: 15696
  • 11 Maji R, Mallojjala SC, Wheeler SE. Chem. Soc. Rev. 2018; 47: 1142
    • 13a Kampen D, Ladépêche A, Claßen G, List B. Adv. Synth. Catal. 2008; 350: 962
    • 13b García-García P, Lay F, García-García P, Rabalakos C, List B. Angew. Chem. Int. Ed. 2009; 48: 4363
    • 14a Wakchaure VN, List B. Angew. Chem. Int. Ed. 2010; 49: 4136
    • 14b Vellalath S, Čorić I, List B. Angew. Chem. Int. Ed. 2010; 49: 9749
    • 14c Čorić I, List B. Nature 2012; 483: 315
    • 15a Juaristi E, Escalante J, León-Romo JL, Reyes A. Tetrahedron: Asymmetry 1998; 9: 715
    • 15b Mastranzo VM, Santacruz E, Huelgas G, Paz E, Sosa-Rivadeneyra MV, Bernès S, Juaristi E, Quintero L, Anaya de Parrodi C. Tetrahedron: Asymmetry 2006; 17: 1663
    • 15c Bandala Y, Juaristi E. Aldrichimica Acta 2010; 43: 65
    • 16a Molt O, Schrader T. Synthesis 2002; 2633
    • 16b Cruz-Hernández C, Landeros JM, Juaristi E. Synthesis of Octahydro-1,2,3-diazaphospholidine-2-oxides and their Derivatives: Applications in Asymmetric Synthesis. In Targets in Heterocyclic Systems, Vol. 23. Atannasi OA, Merino P, Spinelli D. Italian Chemical Society; Rome: 2019: 324
    • 16c Bennani YL, Hanessian S. Tetrahedron 1996; 52: 13837
    • 17a Hernández-Rodríguez M, Melgar-Fernández R, Juaristi E. J. Phys. Org. Chem. 2005; 18: 792
    • 17b Seebach D, Lamatsch B, Amstutz R, Beck AK, Doler M, Egli M, Fitzi R, Gautschi M, Herradón B, Hidber PC, Irwin JJ, Locher R, Maestro M, Maeztke T, Mouriño A, Pfammatter E, Plattner DA, Schickli C, Schweizer WB, Seiler P, Stucky G, Petter W, Escalante J, Juaristi E, Quintana D, Miravitlles C, Molins E. Helv. Chim. Acta 1992; 75: 913
  • 18 Juaristi E. Introduction to Stereochemistry and Conformational Analysis . Wiley; New York: 1991: 208-210 ; and references therein
    • 19a Cruz-Hernández C, Hernández-González PE, Juaristi E. Synthesis 2018; 50: 1827
    • 19b Cruz-Hernández C, Hernández-González PE, Juaristi E. Synthesis 2018; 50: 3445
    • 19c Cruz-Hernández C, Martínez-Martínez E, Hernández-González PE, Juaristi E. Eur. J. Org. Chem. 2018; 6890
    • 20a Olah GA, Narang SC, Balaram Gupta BG, Malhotra R. J. Org. Chem. 1979; 44: 1247
    • 20b Olah GA, Husain A, Balaram Gupta BG, Narang SC. Angew. Chem., Int. Ed. Engl. 1981; 20: 690
  • 21 Clark VM, Kirby GW, Todd A. J. Chem. Soc. 1958; 3039
  • 22 Crystallographic data for (1S,2S,1′S,2′S)-5: C29H35O2N2P, Orthorhombic, P212121; a = 10.5761(4), b = 12.2777(5), c = 19.8836(9); α = 90°, β = 89.9733°, γ = 90°; V = 2581.89(19); z = 4, z′ = 1; R1 = 4.75%. CCDC 2117376 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 23a Cowley AH, Pinnell RP. J. Am. Chem. Soc. 1965; 87: 4454
    • 23b Hutchins RO, Maryanoff BE, Albrand JP, Cogne A, Gagnaire D, Robert JB. J. Am. Chem. Soc. 1972; 94: 9151
  • 24 Desiraju GR. Acc. Chem. Res. 1996; 29: 441
  • 25 Dauber P, Hagler AT. Acc. Chem. Res. 1980; 13: 105
  • 26 van der Knaap M, Basalan F, van der Mei HC, Busscher HJ, van der Marel GA, Overkleeft HS, Overhand M. Chem. Biodivers. 2012; 9: 2494
  • 27 Crystallographic data for (1S,2S,1′S,2′S)-6: C29H35ON2PS, Monoclinic, P21; a = 8.8328(18), b = 8.5329(17), c = 17.957(4); α = 90°, β = 99.27(3)°, γ = 90°; V = 1335.7(5); z = 2, z′ = 1; R1 = 5.14%. CCDC 2117375 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 28a Khorana HG, Tener GM, Wright RS, Moffatt JG. J. Am. Chem. Soc. 1957; 79: 430
    • 28b Cherbuliez E, Probst H, Rabinowitz J. Helv. Chim. Acta 1959, 42: 1377
    • 29a Haake PC, Westheimer FH. J. Am. Chem. Soc. 1961; 83: 1102
    • 29b Westheimer FH. Acc. Chem. Res. 1968; 1: 70
  • 30 Gerlt JA, Westheimer FH, Sturtevant JM. J. Biol. Chem. 1975; 250: 5059
    • 31a Gorenstein DG, Luxon BA, Findlay JB. J. Am. Chem. Soc. 1977; 99: 8048
    • 31b Gorenstein DG, Luxon BA, Findlay JB, Momii R. J. Am. Chem. Soc. 1977; 99: 4170
    • 31c Gorenstein DG, Luxon BA, Findlay JB. J. Am. Chem. Soc. 1979; 101: 5869
    • 31d Gorenstein DG, Luxon BA, Goldfield EM. J. Am. Chem. Soc. 1980; 102: 1757
    • 31e Fanii T, Taira K, Gorenstein DG, Vaidyanathaswamy R, Verkade JG. J. Am. Chem. Soc. 1986; 108: 6311
  • 32 Alabugin IV, Kuhn L, Medvedev MG, Krivoshchapov NV, Vil’ VA, Yaremenko IA, Mehaffy P, Yarie M, Terent’ev AO, Zolfigol MA. Chem. Soc. Rev. 2021; 50: 10253
    • 33a Koizumi T, Arai Y, Yoshii E. Tetrahedron Lett. 1973; 48: 4763
    • 33b Lemmen P, Richter W, Werner B, Karl R, Stumpf R, Ugi I. Synthesis 1993; 1
    • 33c Ramirez F, Ugi I. Phosphorus, Sulfur Relat. Elem. 1976; 1: 231
    • 34a Hudson RF, Brown C. Acc. Chem. Res. 1972; 5: 204
    • 34b Cherkasov RA, Ovchinnikov VV, Pudovik MA, Pudovik AN. Russ. Chem. Rev. 1982; 51: 1305
    • 34c Chang N.-Y, Lim C. J. Am. Chem. Soc. 1998; 120: 2156
  • 35 Perrin DD, Armarego WL. F. Purification of Laboratory Chemicals . Pergamon Press; London: 1988