Synthesis 2022; 54(06): 1537-1550
DOI: 10.1055/a-1713-8481
short review

Modern Synthesis and Chemistry of Stabilized Ketene N,O-Acetals

a   Medicinal Chemistry Knowledge Center, Stanford ChEM-H, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, USA
,
b   Department of Chemistry and Biochemistry, South Dakota State University, 1055 Campanile Avenue, Brookings, SD 57007, USA
› Author Affiliations


This article is dedicated to the late Sandra ‘Sandy’ Newman of the Van D. and Barbara B. Fishback Honors College at South Dakota State University.

Abstract

Ketene N,O-acetals are robust and versatile synthons. Herein, we outline the synthesis of stable ketene N,O-acetals in the twenty-first century. In addition, we review recent developments in the chemistry of ketene N,O-acetals, as it applies to the vinylogous Mukaiyama aldol reaction, electrolysis, and pericyclic transformations. While dated reports rely on in situ use, modern methods of ketene N,O-acetal synthesis are heavily oriented towards producing products with high ‘bench’ stability; moreover, in the present century, chemists typically enhance the stability of ketene N,O-acetals by positioning an electron-withdrawing group at the β-terminus or at the N-position. As propitious substrates in the vinylogous Mukaiyama aldol reaction, ketene N,O-acetals readily provide polyketide adducts with high regioselectivity. When exposed to electrolysis conditions, the title functional group forms a reactive radical cation and cleanly couples with a variety of activated olefins. Given their electron-rich nature, ketene N,O-acetals act as facile substrates in several rearrangement reactions; further, ketene N,O-acetals reserve the ability to act as either dienophiles or dienes in Diels–Alder reactions. Lastly, ketene N,O-acetals are seemingly more stable than their O,O-counterparts and more reactive than analogous N,N- or S,S-acetals; these factors, in combination, make ketene N,O-acetals advantageous substitutes for other ketene acetal homologues.

1 Introduction

2 Select Methods of Stabilization-Oriented Ketene N,O-Acetal Synthesis

3 Ketene N,O-Acetals in the Vinylogous Mukaiyama Aldol Reaction

4 Ketene N,O-Acetals in Anodic Coupling and Electrochemical Oxidation Reactions

5 Rearrangement and Diels–Alder Reactions of Ketene N,O-Acetals

6 Conclusions, Perspectives, and Directions



Publication History

Received: 10 November 2021

Accepted after revision: 06 December 2021

Accepted Manuscript online:
06 December 2021

Article published online:
14 February 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 McElvain SM. Chem. Rev. 1949; 45: 453
  • 2 Zhang L, Dong J, Xu X, Liu Q. Chem. Rev. 2016; 116: 287

    • For general information, see the following, as well as the references cited therein:
    • 3a Hasek RH, Meen RH, Martin JC. J. Org. Chem. 1965; 30: 1495
    • 3b Hasek RH, Gott G, Martin JC. J. Org. Chem. 1964; 29: 2513
  • 4 Quast H, Ach M, Balthasar J, Hergenrother T, Regnat D, Lehmann J, Banert K. Helv. Chim. Acta 2005; 88: 1589
  • 5 Fukuda H, Oda M, Endo T. J. Polym. Sci. Part A: Polym. Chem. 1999; 37: 699
  • 6 Beyerstedt F, McElvain SM. J. Am. Chem. Soc. 1936; 58: 529
  • 7 For details regarding the versatility of ketene N,O-acetals, or ‘push-pull,’ ketene N,O-acetals, see: Huang F, Wu P, Wang L, Chen J, Sun C, Yu Z. J. Org. Chem. 2014; 79: 10553
  • 8 Basu S, Gupta V, Nickel J, Schneider C. Org. Lett. 2014; 16: 274
  • 9 For the contemporary use, and growing importance, of ketene N,O-acetals, see: Cornia A, Felluga F, Frenna V, Ghelfi F, Parsons AF, Pattarozzi M, Roncaglia F, Spinelli D. Tetrahedron 2012; 68: 5863
  • 10 Barnes HM, Kundiger D, McElvain SM. J. Am. Chem. Soc. 1940; 62: 1281
  • 11 Padwa A, Price AT, Zhi L. J. Org. Chem. 1996; 61: 2283
  • 12 For sensitivity of ketene N,O-acetals to moisture and the importance of in situ use, see: Meyers AI, Nazarenko N. J. Am. Chem. Soc. 1972; 94: 3243

    • For details regarding the mechanism of ketene N,O-acetal hydrolysis:
    • 13a Franz A, Eschler P.-Y, Tharin M, Stoeckli-Evans H, Neier R. Synthesis 1996; 1239
    • 13b Kresge AJ, Leibovitch M. J. Am. Chem. Soc. 1992; 114: 3099
    • 13c Hershfield R, Yeager MJ, Schmir GL. J. Org. Chem. 1975; 40: 2940
  • 14 McElvain SM, Tate BE. J. Am. Chem. Soc. 1945; 67: 202
  • 15 Fukuda H, Oda M. Macromolecules 1996; 29: 3043
  • 16 Beccalli EM, Marchesini A. Tetrahedron 1997; 53: 10433
    • 17a Huang Z.-T, Zhang P.-C. Synth. Commun. 1990; 20: 1399
    • 17b Huang Z.-T, Zhang P.-C. Synth. Commun. 1989; 19: 2999
  • 18 For information regarding the increased stability of ketene N,O-acetals, due to intramolecular hydrogen bonding, see: Huang Z.-T, Wang M.-X. Synth. Commun. 1991; 21: 1177

    • For fundamental, structural information regarding ‘push-pull’ alkenes, see:
    • 19a Kleinpeter E. J. Serb. Chem. Soc. 2006; 71: 1
    • 19b Kleinpeter E, Schulenburg A. Tetrahedron Lett. 2005; 46: 5995
    • 19c Kleinpeter E, Klod S, Rudorf W.-D. J. Org. Chem. 2004; 69: 4317
    • 19d Fabian WM. F, Dworczak R, Junek H, Pawar BN. J. Chem. Soc., Perkin Trans. 2 1995; 903
    • 19e Sandstrom J. Top. Stereochem. 1983; 14: 83
  • 20 Padwa A, Austin DJ, Precedo L, Zhi L. J. Org. Chem. 1993; 58: 1144
  • 21 Brannock KC, Burpitt RD, Thweatt JG. J. Org. Chem. 1964; 29: 940
  • 22 Hosomi A, Miyashiro Y, Yoshida R, Tominaga Y, Yanagi T, Hojo M. J. Org. Chem. 1990; 55: 5310
  • 23 Cao L, Pittman CU. Jr. J. Polym. Sci. Part A: Polym. Chem. 1999; 37: 2823
  • 24 For examples of ketene N,O-acetals reacting with carbonyl compounds in an aldol-fashion: Huang Z.-T, Zhang P.-C. Chem. Ber. 1989; 122: 2011
  • 25 For general and mechanistic information, see: Myers AG, Widdowson KL, Kukkola PJ. J. Am. Chem. Soc. 1992; 114: 2765
  • 26 Okada M, Kitagawa O, Hanano T, Taguchi T. Tetrahedron 1997; 53: 6825
  • 27 For examples of the ketene N,O-acetal moiety being incorporated into heterocyclic structure, see: Huang Z.-N, Li Z.-M. Synth. Commun. 1995; 25: 3603
  • 28 Franz A, Eschler P.-Y, Tharin M, Neier R. Tetrahedron 1996; 52: 11643
  • 29 See the following, with an emphasis on the references cited therein: Boger DL, Kochanny MJ. J. Org. Chem. 1994; 59: 4950
  • 30 Metz P, Mues C. Synlett 1990; 97
  • 31 Brannock KC, Burpitt RD, Thweatt JG. J. Org. Chem. 1963; 28: 1697

    • Since 2000, ketene N,O-acetals have been utilized in several synthetic applications. These include: ring-opening reactions, radical cyclizations, coupling with isocyanates, aminomethylations, the synthesis of heterocycles, and nucleophilic arylation. For brevity, we have cited these here, but do not discuss the chemistry in detail. For further information, see:
    • 32a Zhou A, Pittman CU. Jr. J. Comb. Chem. 2006; 8: 262
    • 32b Zhou A, Njogu MN, Pittman CU. Jr. Tetrahedron 2006; 62: 4093
    • 32c Zhou A, Cao L, Li H, Liu Z, Cho H, Henry WP, Pittman CU. Jr. Tetrahedron 2006; 62: 4188
    • 32d Moumne R, Denise B, Guitot K, Rudler H, Lavielle S, Karoyan P. Eur. J. Org. Chem. 2007; 1912
    • 32e Avula S, Koppireddi S, Komsani JR, Nanubolu JB, Yadla R. RSC Adv. 2013; 3: 20990
    • 32f Nayak S, Prabagar B, Sahoo AK. Org. Biomol. Chem. 2016; 14: 803
    • 32g Takeda N, Futaki E, Kobori Y, Ueda M, Miyata O. Angew. Chem. Int. Ed. 2017; 56: 16342
    • 32h Huang F, Wu P, Yu Z. J. Org. Chem. 2020; 85: 4373
  • 33 An in-depth investigation, regarding silyl ketene O,O-acetals and their reactivity, has been performed: Feist H, Langer P. Synthesis 2007; 327
  • 34 Wang K.-M, Yan S.-J, Lin J. Eur. J. Org. Chem. 2014; 6: 1129
  • 35 Huang Z.-T, Wang M.-X. Heterocycles 1994; 37: 1233
  • 36 Rajappa S. Tetrahedron 1981; 37: 1453
  • 37 Wang L, He W, Yu Z. Chem. Soc. Rev. 2013; 42: 599
  • 38 Pan L, Bi X, Liu Q. Chem. Soc. Rev. 2013; 42: 1251
  • 39 Pan L, Liu Q. Synlett 2011; 1073
  • 40 Junjappa H, Ila H, Asokan CV. Tetrahedron 1990; 46: 5423
  • 41 Kolb M. Synthesis 1990; 171
  • 42 Dieter RK. Tetrahedron 1986; 42: 3029

    • For an essential discussion of heterocyclic aromaticity, and the inherent stability thereof, see:
    • 43a Randic M, Trinajstic N, Knop JV, Jericevic Z. J. Am. Chem. Soc. 1985; 107: 849
    • 43b Krygowski TM, Cyranski MK. Chem. Rev. 2001; 101: 1385 ; and references cited therein
  • 44 Kim BT, Min YK, Park NK, Cho KY, Jeong IH. Heterocycles 1995; 41: 641 ; and references cited therein
  • 45 Metwally MA, Abdel-Latif E. J. Sulfur Chem. 2004; 25: 359
  • 46 Elgemeie GH, Elghandour AH, Abd Elaziz GW. Synth. Commun. 2003; 33: 1659
  • 47 Chanu LG, Singh OM, Jang SH, Lee S.-G. Bull. Korean Chem. Soc. 2010; 31: 859
  • 48 Narayanan K, Shanmugam M, Vasuki G, Kabilan S. J. Mol. Struct. 2014; 1056: 70

    • For examples of the application of cyclic ketene N,O-acetals to the synthesis of pharmaceutically-important heterocycles, see:
    • 49a Yan SJ, Niu YF, Huang R, Lin J. Synlett 2009; 2821
    • 49b Yan S, Huang C, Su C, Ni Y, Lin J. J. Comb. Chem. 2010; 12: 91

      For potential routes of ketene N,O-acetal application in material science, see:
    • 50a Williams DJ. Angew. Chem., Int. Ed. Engl. 1984; 23: 690
    • 50b Kanis DR, Ratner MA, Marks TJ. Chem. Rev. 1994; 94: 195
  • 51 Song Y, De Silva HI, Henry WP, Ye G, Chatterjee S, Pittman CU. Jr. Tetrahedron Lett. 2011; 52: 4507
  • 52 Song Y, Henry WP, De Silva HI, Ye G, Pittman CU. Jr. Tetrahedron Lett. 2011; 52: 853
  • 53 De Silva HI, Song Y, Henry WP, Pittman CU. Jr. Tetrahedron Lett. 2012; 53: 2965
  • 54 Woodbury RP, Rathke MW. J. Org. Chem. 1978; 43: 881
  • 55 For a seminal report, regarding silylation of enolates as a route to ketene acetals, see: Corey EJ, Gross AW. Tetrahedron Lett. 1984; 25: 495
  • 56 Kim S, Lim CJ, Song C, Chung W.-J. J. Am. Chem. Soc. 2002; 124: 14306

    • For earlier reports that corroborate the stabilizing effects of the designated N-substituted groups, see:
    • 57a Boivin J, Schiano A.-M, Zard SZ. Tetrahedron Lett. 1994; 35: 249
    • 57b Boivin J, Fouquet E, Zard SZ. Tetrahedron Lett. 1991; 32: 4299

      Support for this method can be found in more dated reports:
    • 58a Jiang J, DeVita RJ, Doss GA, Goulet MT, Wyvratt MJ. J. Am. Chem. Soc. 1999; 121: 593
    • 58b Nicolaou KC, Shi G.-C, Gunzner P, Gartner P, Yange Z. J. Am. Chem. Soc. 1997; 119: 5467

      For information regarding Evans’ chiral auxiliary in asymmetric reactions, see:
    • 59a Heravi MM, Zadsirjan V, Farajpour B. RSC Adv. 2016; 6: 30498
    • 59b Nazari A, Heravi MM, Zadsirjan V. J. Organomet. Chem. 2021; 932: 121629
  • 60 For a pilot study, with regards to this field of synthesis, see: Moeller KD, Tinao LV. J. Am. Chem. Soc. 1992; 114: 1033
  • 61 Shirokawa S.-I, Kamiyama M, Nakamura T, Okada M, Nakazaki A, Hosokawa S, Kobayashi S. J. Am. Chem. Soc. 2004; 126: 13604
  • 62 Denmark SE, Heemstra JR. Jr. J. Am. Chem. Soc. 2006; 128: 1038
  • 63 Shinoyama M, Shirokawa S.-I, Nakazaki A, Kobayashi S. Org. Lett. 2009; 11: 1277
  • 64 Nakamura T, Harachi M, Kano T, Mukaeda Y, Hosokawa S. Org. Lett. 2013; 15: 3170
  • 65 Huang Y.-T, Moeller KD. Tetrahedron 2006; 62: 6536
  • 66 Symkenberg G, Kalesse M. Org. Lett. 2012; 14: 1608
  • 67 Cook AM, Wolf C. Angew. Chem. Int. Ed. 2016; 55: 2929
  • 68 Smith DL, Goundry WF, Lam HW. Chem. Commun. 2012; 48: 1505
  • 69 Naito H, Hata T, Urabe H. Tetrahedron Lett. 2008; 49: 2298
    • 70a Heterocycles in Natural Product Synthesis . Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011
    • 70b Jampilek J. Molecules 2019; 24: 3839
    • 70c Cabrele C, Reiser O. J. Org. Chem. 2016; 81: 10109
  • 71 Shapiro JD, Sonberg JC, Schafer BC, Williams CC, Ferris HR, Reinheimer EW, Van Wynsberghe AW, Kriley CE, Majireck MM. Molecules 2018; 23: 413
  • 72 Paris TJ, Schwartz C, Willand-Charnley R. J. Org. Chem. 2021; 86: 2369
  • 73 For a seminal review, regarding use of the vinylogous Mukaiyama aldol reaction (VMAR) prior to 2000, see: Casiraghi G, Zanardi F, Appendino G, Rassu G. Chem. Rev. 2000; 100: 1929

    • For additional reviews, regarding the VMAR, see (as well as the references cited therein):
    • 74a Cordes MH. C, Kalesse M. Org. React. 2019; 98: 173-773
    • 74b Soriente A, De RM, Villano R, Scettri A. Curr. Org. Chem. 2004; 8: 993
    • 74c Denmark SE, Heemstra JR. Jr, Beutner GL. Angew. Chem. Int. Ed. 2005; 44: 4682
  • 75 Mukaiyama T, Narasaka K, Banno K. Chem. Lett. 1973; 1011

    • For early, related works detailing the use of vinyloxyboranes, see:
    • 76a Mukaiyama T, Inomata K, Masayoshi M. J. Am. Chem. Soc. 1973; 95: 967
    • 76b Inomata K, Muraki M, Mukaiyama T. Bull. Chem. Soc. Jpn. 1973; 46: 1807
  • 77 Matsuo J, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 9109
  • 78 Hosokawa S. Tetrahedron Lett. 2018; 59: 77
  • 79 Bisai V. Synthesis 2012; 44: 1453

    • For select examples:
    • 80a Sengupta A, Hosokawa S. Synlett 2019; 30: 709
    • 80b Suzuki T, Fujimura M, Fujita K, Kobayashi S. Tetrahedron 2017; 73: 3652
    • 80c Zhang Y.-H, Liu R, Liu B. Chem. Commun. 2017; 53: 5549
    • 80d Kanoh N, Kawamata A, Itagaki T, Miyazaki Y, Yahata K, Kwon E, Iwabuchi Y. Org. Lett. 2014; 16: 5216
    • 80e Ramesh P, Meshram HM. Tetrahedron 2012; 68: 9289
    • 80f Wang L, Gong J, Deng L, Xiang Z, Chen Z, Wang Y, Chen J, Yang Z. Org. Lett. 2009; 11: 1809

      For applications of the Kobayashi reaction to the synthesis of natural products, see the following reviews:
    • 81a Cordes M, Kalesse M. Molecules 2019; 24: 3040
    • 81b Kalesse M, Cordes M, Symkenberg G, Lu H.-H. Nat. Prod. Rep. 2014; 31: 563
  • 82 For a review, written by the named author, regarding the use of TiCl4, see: Mukaiyama T. Angew. Chem., Int. Ed. Engl. 1977; 16: 817
    • 83a Tsukada H, Mukaeda Y, Hosokawa S. Org. Lett. 2013; 15: 678
    • 83b Mukaeda Y, Kato T, Hosokawa S. Org. Lett. 2012; 14: 5298

      For additional information, regarding application of Kobayashi technology to the synthesis of natural products, see:
    • 84a Hosokawa S. Acc. Chem. Res. 2018; 51: 1301
    • 84b Kalesse M. Top. Curr. Chem. 2005; 244: 43

      For natural product synthesis, via electrolysis, see:
    • 85a Mihelcic J, Moeller KD. J. Am. Chem. Soc. 2004; 126: 9106
    • 85b Liu B, Duan S, Sutterer AC, Moeller KD. J. Am. Chem. Soc. 2002; 124: 10101
  • 86 For heterocycle synthesis, via anodic coupling reactions, see: Sperry JB, Whitehead CR, Ghiviriga I, Walczak RM, Wright DL. J. Org. Chem. 2004; 69: 3726
  • 87 For a review focused on anodic coupling reactions, in general, see: Moeller KD. Tetrahedron 2000; 56: 9527

    • For select examples of anodic coupling with enol ethers:
    • 88a Chiba K, Miura T, Kim S, Kitano Y, Tada M. J. Am. Chem. Soc. 2001; 123: 11314
    • 88b Schmittel M, Burghart A, Werner H, Laubender M, Sollner R. J. Org. Chem. 1999; 64: 3077
    • 88c Ryter K, Livinghouse T. J. Am. Chem. Soc. 1998; 120: 2658
    • 88d Hudson CM, Marzabadi MR, Moeller KD, New DG. J. Am. Chem. Soc. 1991; 113: 7372

      For select examples of anodic coupling with dithioketene acetals:
    • 89a Sun Y, Moeller KD. Tetrahedron Lett. 2002; 43: 7159
    • 89b Sun Y, Liu B, Kao J, d’Avignon DA, Moeller KD. Org. Lett. 2001; 3: 1729
    • 89c Reddy SH. K, Chiba K, Sun Y, Moeller KD. Tetrahedron 2001; 57: 5183
  • 90 Huang Y.-T, Moeller KD. Org. Lett. 2004; 6: 4199
  • 91 Wu H, Moeller KD. Org. Lett. 2007; 9: 4599
  • 92 Zeng C.-C, Liu F.-J, Ping D.-W, Hu L.-M, Cai Y.-L, Zhong R.-G. J. Org. Chem. 2009; 74: 6386
  • 93 Bai Y.-X, Ping D.-W, Little RD, Tian H.-Y, Hu L.-M, Zeng C.-C. Tetrahedron 2011; 67: 9334
  • 94 Neuschütz K, Simone J.-M, Thyrann T, Neier R. Helv. Chim. Acta 2000; 83: 2712
  • 95 Suzuki T, Inui M, Hosokawa S, Kobayashi S. Tetrahedron Lett. 2003; 44: 3713
  • 96 Qu H, Gu X, Min BJ, Liu Z, Hruby VJ. Org. Lett. 2006; 8: 4215
  • 97 Breuning M, Hauser T. Tetrahedron 2007; 63: 934
  • 98 Tang F, Yao Y, Xu Y.-J, Lu C.-D. Angew. Chem. Int. Ed. 2018; 57: 15583
  • 99 Konopelski JP, Boehler MA. J. Am. Chem. Soc. 1989; 111: 4515
  • 100 Müller J, Troschütz R. Synthesis 2006; 1513