Synthesis 2022; 54(11): 2539-2547
DOI: 10.1055/a-1765-7383
short review

Recent Advances in Radical Reactions of Vinyl Triflates and Their Derivatives

Takuji Kawamoto
,
Akio Kamimura
This work was partially supported by the Asahi Glass Foundation, Yamaguchi­ University, the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Young Scientists (B) (16K17869 and 18K14222), the Hattori Hokokai Foundation, the Yamagin Regional Enterprise Support Foundation, the Tobe Maki Scholarship Foundation, Daicel Corporation, the JGC-S Scholarship Foundation, and the Kyoto Technoscience Center.


Abstract

Vinyl triflates are valuable precursors for vinyl cations and vinyl carbenes and serve as electrophiles in transition-metal-catalyzed cross-coupling reactions. However, the scope of radical reactions involving vinyl triflates has been very limited until recently. In this short review, we summarize the recent development on two categories of radical reactions involving vinyl triflates, i.e., radical trifluoromethylations and radical non-trifluoromethylations of vinyl triflates.

1 I ntroduction to Vinyl Triflates

2 Earlier Work on Radical Reactions of Vinyl Triflates

3 Radical Trifluoromethylations of Vinyl Triflates and Their Derivatives

4 Radical Non-Trifluoromethylation of Vinyl Triflates

5 Conclusions and Outlook



Publication History

Received: 06 January 2022

Accepted after revision: 08 February 2022

Accepted Manuscript online:
08 February 2022

Article published online:
29 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Stang PJ, Treptow W. Synthesis 1980; 283
  • 2 Ritter K. Synthesis 1993; 735
  • 3 Baraznenok IL, Nenajdenko VG, Balenkova ES. Tetrahedron 2000; 56: 3077
  • 4 Stang PJ, Summerville R. J. Am. Chem. Soc. 1969; 91: 4600
  • 5 Yang Y, Moschetta EG, Rioux RM. ChemCatChem 2013; 5: 3005
  • 6 Al-huniti MH, Lepore SD. Org. Lett. 2014; 16: 4154
  • 7 Yang Y, Chang JW, Rioux RM. J. Catal. 2018; 365: 43
  • 8 Tummatorn J, Punjajom K, Rodphon W, Ruengsangtongkul S, Chaisan N, Lumyong K, Thongsornkleeb C, Nimnual P, Ruchirawat S. Org. Lett. 2019; 21: 4694
  • 9 Stang PJ. Acc. Chem. Res. 1978; 11: 107
  • 10 Miura K, Taniguchi M, Nozaki K, Oshima K, Utimoto K. Tetrahedron Lett. 1990; 31: 6391
  • 11 Lee JY, Lim KC, Meng X, Kim S. Synlett 2010; 1647
  • 12 Kawamoto T, Sasaki R, Kamimura A. Angew. Chem. Int. Ed. 2017; 56: 1342
  • 13 Martínez AG, Fernández AH, Alvarez RM, Vilar ET, Fraile AG, Barcina JO, Iglesias LP. Tetrahedron Lett. 1987; 28: 1929
  • 14 Huang H.-M, Bellotti P, Ma J, Dalton T, Glorius F. Nat. Rev. Chem. 2021; 5: 301
  • 15 Su X, Huang H, Yuan Y, Li Y. Angew. Chem. Int. Ed. 2017; 56: 1338
  • 16 Ye Y, Lee SH, Sanford MS. Org. Lett. 2011; 13: 5464
  • 17 Liu S, Jie J, Yu J, Yang X. Adv. Synth. Catal. 2018; 360: 267
  • 18 Kawamoto T, Sasaki R, Kamimura A, Matsubara H. J. Fluorine Chem. 2019; 221: 66
  • 19 Kawamoto T, Noguchi K, Takata R, Sasaki R, Matsubara H, Kamimura A. Chem. Eur. J. 2021; 27: 9529
  • 20 Harmer MA, Junk C, Rostovtsev V, Carcani LG, Vickery J, Schnepp Z. Green Chem. 2007; 9: 30
  • 21 A trace amount of compound 43 was observed in the crude mixture.
  • 22 dos Passos Gomes G, Wimmer A, Smith JM, König B, Alabugin IV. J. Org. Chem. 2019; 84: 6232
  • 23 Kawamoto T, Kawabata T, Noguchi K, Kamimura A. Org. Lett. 2022; 24: 324
  • 24 Hartmann M, Li Y, Studer A. Org. Biomol. Chem. 2016; 14: 206
  • 25 Kato S, Igami S, Ogasawara M. JPS63150258A, 1988
  • 26 Kawamoto T, Ikawa K, Kamimura A. J. Org. Chem. 2021; 86: 15818
  • 27 Dai W, Geib SJ, Curran DP. J. Am. Chem. Soc. 2019; 141: 12355
  • 28 Zheng M, Li G, Lu H. Org. Lett. 2019; 21: 1216
  • 29 Zheng M, Gao K, Zhang Y, Lu H. Org. Chem. Front. 2021; 8: 1830