Synthesis 2022; 54(14): 3162-3179
DOI: 10.1055/a-1794-8355
short review

The Povarov Reaction: A Versatile Method to Synthesize Tetrahydroquinolines, Quinolines and Julolidines

a   Departamento de Química, CCE, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
,
b   Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
,
Ângelo de Fátima
b   Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
,
Sergio Antonio Fernandes
a   Departamento de Química, CCE, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
› Author Affiliations
All studies performed by the groups of de Fátima and Fernandes on Povarov reactions were financially supported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Financial Code 01). A.F. and S.A.F. are supported by CNPq Research Fellowships


Abstract

The multicomponent Povarov reaction represents a powerful approach for the construction of substances containing N-heterocyclic frameworks. By using the Povarov reaction, in addition to accessing tetrahydroquinolines, quinolines and julolidines in a single step, it is possible to form the following new bonds: two Csp 3–Csp 3 and one Csp 3–Nsp 3, two Csp 2–Csp 2 and one Csp 2–Nsp 2, and four Csp 3–Csp 3 and two Csp 3–Nsp 1, respectively. This short review discusses the main features of the Povarov reaction, including its mechanism, the reaction scope by employing different catalysts and substrates, as well as stereoselective versions.

1 Introduction

2 Mechanism of the Povarov Reaction

3 Tetrahydroquinolines

4 Quinolines

5 Julolidines

6 Concluding Remarks



Publication History

Received: 31 December 2021

Accepted after revision: 10 March 2022

Accepted Manuscript online:
10 March 2022

Article published online:
17 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bello D, Ramon R, Lavilla R. Curr. Org. Chem. 2010; 14: 332
  • 2 Forero JS. B, Jones Junior J, da Silva FM. Curr. Org. Synth. 2016; 13: 157
  • 3 Vinogradov MG, Turova OV, Zlotin SG. Adv. Synth. Catal. 2021; 363: 1466
  • 4 Xie M, Lin L, Feng X. Chem. Rec. 2017; 17: 1184
  • 5 Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
  • 6 Kouznetsov VV. Tetrahedron 2009; 65: 2721
  • 7 Masson G, Lalli C, Benohoud M, Dagousset G. Chem. Soc. Rev. 2013; 42: 902
  • 8 Vicente-García E, Ramón R, Preciado S, Lavilla R. Beilstein J. Org. Chem. 2011; 7: 980
  • 9 Muthukrishnan I, Sridharan V, Menéndez JC. Chem. Rev. 2019; 119: 5057
  • 10 Ghashghaei O, Masdeu C, Alonso C, Palacios F, Lavilla R. Drug Discovery Today Technol. 2018; 29: 71
  • 11 Eschenbrenner-Lux V, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 11146
  • 12 Jiang X, Wang R. Chem. Rev. 2013; 113: 5515
  • 13 Laina-Martín V, Fernández-Salas JA, Alemán J. Chem. Eur. J. 2021; 27: 12509
  • 14 Simões JB, De Fátima Â, Sabino AA, Almeida Barbosa LC, Fernandes SA. RSC Adv. 2014; 4: 18612
  • 15 Weyesa A, Mulugeta E. RSC Adv. 2020; 10: 20784
  • 16 Domingo LR, Sáez JA. Org. Biomol. Chem. 2009; 7: 3576
  • 17 Ríos-Gutiérrez M, Layeb H, Domingo LR. Tetrahedron 2015; 71: 9339
  • 18 Domingo LR. Tetrahedron 2002; 58: 3765
  • 19 Domingo LR, Aurell MJ, Sáez JA, Mekelleche SM. RSC Adv. 2014; 4: 25268
  • 20 Mahi MA, Mekelleche SM, Benchouk W, Aurell MJ, Domingo LR. RSC Adv. 2016; 6: 15759
  • 21 Xu H, Zuend SJ, Woll MG, Tao Y, Jacobsen EN. Science 2010; 327: 986
  • 22 Vasconcelos SN. S, Menezes da Silva VH, Braga AA. C, Shamim A, Souza FB, Pimenta DC, Stefani HA. Asian J. Org. Chem. 2017; 6: 913
  • 23 Batey RA, Powell DA, Acton A, Lough AJ. Tetrahedron Lett. 2001; 42: 7935
  • 24 Lucchini V, Prato M, Scorrano G, Stivanello M, Valle G. J. Chem. Soc. Perkin Trans. 2 1992; 259
  • 25 Mellor JM, Merriman GD. Tetrahedron 1995; 51: 6115
  • 26 Dagousset G, Zhu J, Masson G. J. Am. Chem. Soc. 2011; 133: 14804
  • 27 Domingo LR, Ríos-Gutiérrez M, Emamian S. RSC Adv. 2016; 6: 17064
  • 28 Shindoh N, Tokuyama H, Takemoto Y, Takasu K. J. Org. Chem. 2008; 73: 7451
  • 29 Abranches PA. D. S, De Paiva WF, De Fátima Â, Martins FT, Fernandes SA. J. Org. Chem. 2018; 83: 1761
  • 30 de Paiva WF, Braga IB, de Assis JV, Castañeda SM. B, Sathicq ÁG, Palermo V, Romanelli GP, Natalino R, da Silva MJ, Martins FT, de Carvalho GS. G, Amarante GW, Fernandes SA. Tetrahedron 2019; 75: 3740
  • 31 Povarov LS, Mikhailov BM. Izv. Akad. Nauk. Ser. Khim. 1963; 955
  • 32 Kobayashi S, Ishitani H, Nagayama S. Synthesis 1995; 1195
  • 33 Alonso C, Martín-Encinas E, Rubiales G, Palacios F. Eur. J. Org. Chem. 2017; 2916
  • 34 Kouznetsov VV, Bello Forero JS, Amado Torres DF. Tetrahedron Lett. 2008; 49: 5855
  • 35 Almansour AI, Suresh Kumar R, Arumugam N, Bianchini G, Menéndez JC, Al-thamili DM, Periyasami G, Altaf M. Tetrahedron Lett. 2019; 60: 1514
  • 36 Kouznetsov VV, Bohórquez AR. R, Stashenko EE. Tetrahedron Lett. 2007; 48: 8855
  • 37 Krainova GF, Vikharev YB, Anikina LV, Sivtseva EV, Glushkov VA. Pharm. Chem. J. 2009; 43: 606
  • 38 Zubkov FI, Zaitsev VP, Piskareva AM, Eliseeva MN, Nikitina EV, Mikhailova NM, Varlamov AV. Russ. J. Org. Chem. 2010; 46: 1192
  • 39 Zaytsev VP, Zubkov FI, Toze FA. A, Orlova DN, Eliseeva MN, Grudinin DG, Nikitina EV, Varlamov AV. J. Heterocycl. Chem. 2013; 50: E18
  • 40 Krainova GF, Chudinova YO, Gorbunov AA, Mayorova OA, Glushkov VA. Mendeleev Commun. 2012; 22: 201
  • 41 Duarte Y, Gutiérrez M, Astudillo L, Alzate-Morales J, Valdés N. Molecules 2013; 18: 12951
  • 42 Kouznetsov VV, Gómez CM. M, Parada LK. L, Bermudez JH, Méndez LY. V, Acevedo AM. Mol. Diversity 2011; 15: 1007
  • 43 Kouznetsov VV, Meléndez Gómez CM, Rojas Ruíz FA, Del Olmo E. Tetrahedron Lett. 2012; 53: 3115
  • 44 Kouznetsov VV, Meléndez Gómez CM, Bermúdez Jaimes JH. J. Heterocycl. Chem. 2010; 47: 1148
  • 45 Goli N, Mainkar PS, Kotapalli SS, Tejaswini K, Ummanni R, Chandrasekhar S. Bioorg. Med. Chem. Lett. 2017; 27: 1714
  • 46 Goli N, Kallepu S, Mainkar PS, Lakshmi JK, Chegondi R, Chandrasekhar S. J. Org. Chem. 2018; 83: 2244
  • 47 Ribelles P, Sridharan V, Villacampa M, Ramos MT, Menéndez JC. Org. Biomol. Chem. 2013; 11: 569
  • 48 Sridharan V, Avendaño C, Menéndez JC. Synlett 2007; 1079
  • 49 Sridharan V, Avendaño C, Carlos Menéndez J. Tetrahedron 2009; 65: 2087
  • 50 Cerfontaine P, Driessens F, Deltent MF, Petit S. Org. Process Res. Dev. 2020; 24: 807
  • 51 Sridharan V, Avendaño C, Menéndez JC. Synthesis 2008; 1039
  • 52 Martínez Bonilla CA, Puerto Galvis CE, Vargas Méndez LY, Kouznetsov VV. RSC Adv. 2016; 6: 37478
  • 53 Pasha J, Kandagatla B, Sen S, Seerapu GP. K, Bujji S, Haldar D, Nanduri S, Oruganti S. Tetrahedron Lett. 2015; 56: 2289
  • 54 Bernal CC, Bohórquez AR. R, Henao JA, Macías MA. J. Mol. Struct. 2021; 1233: 130095
  • 55 Sun J, Gao H, Wu Q, Yan CG. Beilstein J. Org. Chem. 2012; 8: 1839
  • 56 Clerigué J, Ramos MT, Menéndez JC. Molecules 2021; 26: 1330
  • 57 Rezende TR. M, Varejão JO. S, Sousa AL. L. D. A, Castañeda SM. B, Fernandes SA. Org. Biomol. Chem. 2019; 17: 2913
  • 58 Das DK, Sarkar S, Khan AT, Saravanan P, Patra S. RSC Adv. 2014; 4: 3581
  • 59 Khan AT, Das DK, Khan MM. Tetrahedron Lett. 2011; 52: 4539
  • 60 Zanwar MR, Gawande SD, Kavala V, Kuo CW, Yao CF. Adv. Synth. Catal. 2014; 356: 3849
  • 61 Forero SB, de Carvalho EM, Junior JJ, da Silva FM. Curr. Org. Synth. 2015; 12: 102
  • 62 Rai NP, Shashikanth S, Arunachalam PN. Synth. Commun. 2009; 39: 2125
  • 63 Wang XS, Yin MY, Wang W, Tu SJ. Eur. J. Org. Chem. 2012; 4811
  • 64 Rodriguez Núñez YA, Norambuena M, Romero Bohorquez AR, Morales-Bayuelo A, Gutíerrez M. Heliyon 2019; 5: e02174
  • 65 Chen C, Zingales S, Wang T, Yuan M, Wang D, Cai L, Jiang Q. J. Enzyme Inhib. Med. Chem. 2016; 31: 853
  • 66 Kulkarni AR, Thakur GA. Tetrahedron Lett. 2013; 54: 6592
  • 67 Zhou R, Huang W, Ren W, Guo L, Zeng S, Liu P, Ouyang L, Song X, Peng C, He G. Heterocycles 2013; 87: 2495
  • 68 Ren X, Li G, Huang J, Wang W, Zhang Y, Xing G, Gao C, Zhao G, Zhao J, Tang Z. Org. Lett. 2017; 19: 58
  • 69 Rodríguez YA, Gutiérrez M, Ramírez D, Alzate-Morales J, Bernal CC, Güiza FM, Romero Bohórquez AR. Chem. Biol. Drug Des. 2016; 498
  • 70 Cai J, Li F, Deng GJ, Ji X, Huang H. Green Chem. 2016; 18: 3503
  • 71 Dayal N, Wang M, Sintim HO. ACS Omega 2020; 5: 23799
  • 72 Niño P, Caba M, Aguilar N, Terricabras E, Albericio F, Fernàndez JC. Indian J. Chem., Sect. B: Org. Med. Chem. 2016; 55B: 1117
  • 73 Di Pietro O, Vicente-Garciá E, Taylor MC, Berenguer D, Viayna E, Lanzoni A, Sola I, Sayago H, Riera C, Fisa R, Clos MV, Pérez B, Kelly JM, Lavilla R, Munõz-Torrero D. Eur. J. Med. Chem. 2015; 105: 120
  • 74 Truong PM, Mandler MD, Zavalij PY, Doyle MP. Org. Lett. 2013; 15: 3278
  • 75 Vicente-García E, Ramón R, Lavilla R. Synthesis 2011; 2237
  • 76 Kobayahsi S, Nagayama S. J. Am. Chem. Soc. 1996; 118: 8977
  • 77 Stevenson PJ, Graham I. ARKIVOC 2003; (vii): 139
  • 78 Pelit E, Turgut Z. Ultrason. Sonochem. 2014; 21: 1600
  • 79 Kudale AA, Kendall J, Miller DO, Collins JL, Bodwell GJ. J. Org. Chem. 2008; 73: 8437
  • 80 Maiti S, Sridharan V, Menéndez JC. J. Comb. Chem. 2010; 12: 713
  • 81 Bunescu A, Wang Q, Zhu J. Org. Lett. 2014; 16: 1756
  • 82 Benmeddah A, Bar N, Villemin D, Lohier J.-F, Mostefa-Kara B, Legay R. Helv. Chim. Acta 2018; 101, e1800023
  • 83 Priestley ES, De Lucca I, Zhou J, Zhou J, Saiah E, Stanton R, Robinson L, Luettgen JM, Wei A, Wen X, Knabb RM, Wong PC, Wexler RR. Bioorg. Med. Chem. Lett. 2013; 23: 2432
  • 84 Khaja Mohinuddin PM, Dada R, Almansour AI, Arumugam N, Yaragorla S. Tetrahedron Lett. 2019; 60: 1043
  • 85 Cimarelli C, Bordi S, Piermattei P, Pellei M, Del Bello F, Marcantoni E. Synthesis 2017; 49: 5387
  • 86 Li LP, Cai X, Xiang Y, Zhang Y, Song J, Yang DC, Guan Z, He YH. Green Chem. 2015; 17: 3148
  • 87 Wang H, Wang C, Huang K, Liu L, Chang W, Li J. Org. Lett. 2016; 18: 2367
  • 88 Kouznetsov VV, Merchan Arenas DR, Ortiz Areniz CJ, Meléndez Gómez CM. Synthesis 2011; 4011
  • 89 Smith CD, Gavrilyuk JI, Lough AJ, Batey RA. J. Org. Chem. 2010; 75: 702
  • 90 Guo Q, Teng W, Ren S, Rao S, Wang Y, Chen L, Shen B, Takahashi T. J. Heterocycl. Chem. 2014; 51: 1100
  • 91 Wang L, Liu L, Chang W, Li J. J. Org. Chem. 2018; 83: 7799
  • 92 Galvez J, Castillo JC, Quiroga J, Rajzmann M, Rodriguez J, Coquerel Y. Org. Lett. 2014; 16: 4126
  • 93 Legros J, Crousse B, Ourévitch M, Bonnet-Delpon D. Synlett 2006; 1899
  • 94 Peñaranda Gómez A, Rodríguez Bejarano O, Kouznetsov VV, Ochoa-Puentes C. ACS Sustainable Chem. Eng. 2019; 7: 18630
  • 95 Kouznetsov VV, Merchán-Arenas DR, Martínez-Bonilla CA, Macías MA, Roussel P, Gauthier GH. J. Braz. Chem. Soc. 2016; 27: 2246
  • 96 Škopić MK, Götte K, Gramse C, Dieter M, Pospich S, Raunser S, Weberskirch R, Brunschweiger A. J. Am. Chem. Soc. 2019; 141: 10546
  • 97 Suzuki T, Kuwano S, Arai T. Adv. Synth. Catal. 2020; 362: 3208
  • 98 Leitch JA, Fuentes de Arriba AL, Tan J, Hoff O, Martínez CM, Dixon DJ. Chem. Sci. 2018; 9: 6653
  • 99 Shao T, Yin Y, Lee R, Zhao X, Chai G, Jiang Z. Adv. Synth. Catal. 2018; 360: 1754
  • 100 Ranieri AM, Burt LK, Stagni S, Zacchini S, Skelton BW, Ogden MI, Bissember AC, Massi M. Organometallics 2019; 38: 1108
  • 101 Min C, Sanchawala A, Seidel D. Org. Lett. 2014; 16: 2756
  • 102 Bush TS, Yap GP. A, Chain WJ. Org. Lett. 2018; 20: 5406
  • 103 Imrich HG, Conrad J, Bubrin D, Beifuss U. J. Org. Chem. 2015; 80: 2319
  • 104 He C, Cai J, Zheng Y, Pei C, Qiu L, Xu X. ACS Omega 2019; 4: 15754
  • 105 Fochi M, Caruana L, Bernardi L. Synthesis 2013; 46: 135
  • 106 Bernardi L, Bolzoni G, Fochi M, Mancinelli M, Mazzanti A. Eur. J. Org. Chem. 2016; 3208
  • 107 Yokoi T, Nakagawa Y, Miyagawa H. Pest. Manage. Sci. 2019; 75: 115
  • 108 Zhang HH, Sun XX, Liang J, Wang YM, Zhao CC, Shi F. Org. Biomol. Chem. 2014; 12: 9539
  • 109 Bisag GD, Pecorari D, Mazzanti A, Bernardi L, Fochi M, Bencivenni G, Bertuzzi G, Corti V. Chem. Eur. J. 2019; 25: 15694
  • 110 Dagousset G, Retailleau P, Masson G, Zhu J. Chem. Eur. J. 2012; 18: 5869
  • 111 Jarrige L, Gandon V, Masson G. Chem. Eur. J. 2020; 26: 1406
  • 112 Kazancioglu MZ, Kalay E, Kazancioglu EA, Peshkov VA. ChemistrySelect 2019; 4: 8797
  • 113 Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. J. Am. Chem. Soc. 2009; 131: 4598
  • 114 Min C, Seidel D. Chem. Eur. J. 2016; 22: 10817
  • 115 Shi F, Xing GJ, Tao ZL, Luo SW, Tu SJ, Gong LZ. J. Org. Chem. 2012; 77: 6970
  • 116 Stevanović D, Bertuzzi G, Mazzanti A, Fochi M, Bernardi L. Adv. Synth. Catal. 2018; 360: 893
  • 117 Huang JX, Hou KQ, Hu QL, Chen XP, Li J, Chan AS. C, Xiong XF. Org. Lett. 2020; 22: 1858
  • 118 Wang SJ, Wang Z, Tang Y, Chen J, Zhou L. Org. Lett. 2020; 22: 8894
  • 119 Calleja J, González-Pérez AB, De Lera ÁR, Álvarez R, Fañanás FJ, Rodríguez F. Chem. Sci. 2014; 5: 996
  • 120 Fochi M, Caruana L, Bernardi L. Synthesis 2014; 46: 135
  • 121 Lemos BC, Venturini Filho E, Fiorot RG, Medici F, Greco SJ, Benaglia M. Eur. J. Org. Chem. 2022; e202101171
  • 122 Huang D, Xu F, Chen T, Wang Y, Lin X. RSC Adv. 2013; 3: 573
  • 123 Li J, Gu Z, Zhao X, Qiao B, Jiang Z. Chem. Commun. 2019; 55: 12916
  • 124 Min C, Mittal N, Sun DX, Seidel D. Angew. Chem. Int. Ed. 2013; 52: 14084
  • 125 Gerard B, O’Shea MW, Donckele E, Kesavan S, Akella LB, Xu H, Jacobsen EN, Marcaurelle LA. ACS Comb. Sci. 2012; 14: 621
  • 126 Min C, Lin CT, Seidel D. Angew. Chem. Int. Ed. 2015; 54: 6608
  • 127 Xu H, Zhang H, Jacobsen EN. Nat. Protoc. 2014; 9: 1860
  • 128 Ishitani H, Kobayashi S. Tetrahedron Lett. 1996; 37: 7357
  • 129 Xie M, Liu X, Zhu Y, Zhao X, Xia Y, Lin L, Feng X. Chem. Eur. J. 2011; 17: 13800
  • 130 Yu XL, Kuang L, Chen S, Zhu XL, Li ZL, Tan B, Liu XY. ACS Catal. 2016; 6: 6182
  • 131 Yu J, Jiang HJ, Zhou Y, Luo SW, Gong LZ. Angew. Chem. Int. Ed. 2015; 54: 11209
  • 132 Stevenson PJ, He P, Daly B. Tetrahedron 2014; 70: 7350
  • 133 Hadden M, Nieuwenhuyzen M, Osborne D, Stevenson PJ, Thompson N, Walker AD. Tetrahedron 2006; 62: 3977
  • 134 Ikeda S, Shibuya M, Iwabuchi Y. Chem. Commun. 2007; 504
  • 135 Kumar S, Bawa S, Gupta H. Mini-Rev. Med. Chem. 2009; 9: 1648
  • 136 Park DY, Hwang JY, Kang EJ. Bull. Korean Chem. Soc. 2021; 42: 798
  • 137 Tarantin AV, Glushkov VA, Suponitskii KY, Kudryashov AA, Maiorova OA, Tolstikov AG. Russ. J. Org. Chem. 2010; 46: 1479
  • 138 Almansour AI, Arumugam N, Suresh Kumar R, Carlos Menéndez J, Ghabbour HA, Fun HK, Ranjith Kumar R. Tetrahedron Lett. 2015; 56: 6900
  • 139 Dong W, Hu B, Gao X, Li Y, Xie X, Zhang Z. J. Org. Chem. 2016; 81: 8770
  • 140 Jia X, Lü S, Yuan Y, Zhang X, Zhang L, Luo L. Org. Biomol. Chem. 2017; 15: 2931
  • 141 Li XT, Zou J, Wang TH, Ma HC, Chen GJ, Bin DY. J. Am. Chem. Soc. 2020; 142: 6521
  • 142 Almansour AI, Arumugam N, Suresh Kumar R, Mahalingam SM, Sau S, Bianchini G, Menéndez JC, Altaf M, Ghabbour HA. Eur. J. Med. Chem. 2017; 138: 932
  • 143 Borel CR, Barbosa LC. A, Maltha CR. Á, Fernandes SA. Tetrahedron Lett. 2015; 56: 662
  • 144 Borel CR, Barbosa LC. A, Maltha CR. A, Fernandes SA, Santos LB, Takahashi JA. Quim. Nova 2017; 40: 1065
  • 145 Richter H, García Mancheño O. Org. Lett. 2011; 13: 6066
  • 146 Li X, Xing Q, Li P, Zhao J, Li F. Eur. J. Org. Chem. 2017; 618
  • 147 Singh RR, Singh TP, Singh NP, Naorem SS, Singh OM. J. Fluoresc. 2021; 31: 247
  • 148 Zhao YL, Zhang W, Wang S, Liu Q. J. Org. Chem. 2007; 72: 4985
  • 149 Liberto NA, Simões JB, de Paiva Silva S, da Silva CJ, Modolo LV, de Fátima Â, Silva LM, Derita M, Zacchino S, Zuñiga OM. P, Romanelli GP, Fernandes SA. Bioorg. Med. Chem. 2017; 25: 1153
  • 150 Brown CE, McNulty J, Bordón C, Yolken R, Jones-Brando L. Org. Biomol. Chem. 2016; 14: 5951
  • 151 Huang S, Bao X, Fu Y, Zhang Y, Quan Z, Huo C. Asian J. Org. Chem. 2020; 9: 925
  • 152 Chandra D, Dhiman AK, Kumar R, Sharma U. Eur. J. Org. Chem. 2019; 2753
  • 153 Jia X, Qing C, Huo C, Peng F, Wang X. Tetrahedron Lett. 2012; 53: 7140
  • 154 Zhang X, Li P, Yuan Y, Jia X. Chin. J. Org. Chem. 2018; 38: 2435
  • 155 Yuan Y, Zhang S, Sun Z, Su Y, Ma Q, Yuan Y, Jia X. Org. Lett. 2020; 22: 6294
  • 156 Huo C, Xie H, Wu M, Jia X, Wang X, Chen F, Tang J. Chem. Eur. J. 2015; 21: 5723
  • 157 Qing X, Wang T, Dai C, Su Z, Wang C. Synthesis 2018; 50: 1350
  • 158 Li Y, Cao X, Liu Y, Wan JP. Org. Biomol. Chem. 2017; 15: 9585
  • 159 Zhang M.-M, Wang W, Li T.-J, Yao C.-S, Wang X.-S. Res. Chem. Intermed. 2013; 39: 1781
  • 160 Gao Q, Liu S, Wu X, Wu A. Org. Lett. 2014; 16: 4582
  • 161 Yang JM, Wu L, Fang D, Cao J, Zhou YJ, Wang XS. Res. Chem. Intermed. 2014; 40: 1103
  • 162 Gao Q, Liu S, Wu X, Zhang J, Wu A. J. Org. Chem. 2015; 80: 5984
  • 163 Geng X, Wu X, Zhao P, Zhang J, Wu YD, Wu AX. Org. Lett. 2017; 19: 4179
  • 164 Singh M, Vaishali, Kumar S, Jamra R, Pandey SK, Singh V. Tetrahedron 2020; 76: 131640
  • 165 Schendera E, Unkel LN, Huyen Quyen PP, Salkewitz G, Hoffmann F, Villinger A, Brasholz M. Chem. Eur. J. 2020; 26: 269
  • 166 Wu X, Geng X, Zhao P, Zhang J, Gong X, Wu YD, Wu AX. Org. Lett. 2017; 19: 1550
  • 167 Yu XX, Zhao P, Zhou Y, Huang C, Wang LS, Wu YD, Wu AX. J. Org. Chem. 2021; 86: 8381
  • 168 Dobbelaar PH, Marzabadi CH. Tetrahedron Lett. 2010; 51: 201
  • 169 Dobbelaar PH, Marzabadi CH. Tetrahedron 2011; 67: 9273
  • 170 Pericherla K, Kumar A, Jha A. Org. Lett. 2013; 15: 4078
  • 171 Zhou JX, Wang W, Wang XS. J. Heterocycl. Chem. 2014; 51: 502
  • 172 De Oliveira IM, Vasconcelos SS. N, Barbeiro CS, Correra TC, Shamim A, Pimenta DC, Caracelli I, Zukerman-Schpector J, Stefani HA, Manarin F. New J. Chem. 2017; 41: 9884
  • 173 Yao B.-J, Wu W.-X, Ding L.-G, Dong Y.-B. J. Org. Chem. 2021; 86: 3024
  • 174 Meyet CE, Larsen CH. J. Org. Chem. 2014; 79: 9835
  • 175 More DA, Shinde GH, Shaikh AC, Muthukrishnan M. RSC Adv. 2019; 9: 30277
  • 176 Xi GL, Liu ZQ. Eur. J. Med. Chem. 2014; 86: 759
  • 177 Xi GL, Liu ZQ. Eur. J. Med. Chem. 2015; 95: 416
  • 178 Sarode PB, Bahekar SP, Chandak HS. Tetrahedron Lett. 2016; 57: 5753
  • 179 Selvi T, Velmathi S. J. Org. Chem. 2018; 83: 4087
  • 180 Guchhait SK, Jadeja K, Madaan C. Tetrahedron Lett. 2009; 50: 6861
  • 181 Wang P, Wang X, Niu X, Zhu L, Yao X. Chem. Commun. 2020; 56: 4840
  • 182 Ghoshal A, Yugandhar D, Nanubolu JB, Srivastava AK. ACS Comb. Sci. 2017; 19: 600
  • 183 Ni M, Zhang Y, Gong T, Feng B. Adv. Synth. Catal. 2017; 359: 824
  • 184 Zubkov FI, Zaitsev VP, Peregudov AS, Mikhailova NM, Varlamov AV. Izv. Akad. Nauk. Ser. Khim. 2007; 56: 1023
  • 185 Zubkov FI, Zaitsev VP, Peregudov AS, Mikhailova NM, Varlamov AV. Russ. Chem. Bull. 2007; 56: 1063
  • 186 Chen M, Sun N, Liu Y. Org. Lett. 2013; 15: 5574
  • 187 Penã-Solórzano D, Kouznetsov VV, Ochoa-Puentes C. New J. Chem. 2020; 44: 7987
  • 188 Twin H, Batey RA. Org. Lett. 2004; 6: 4913
  • 189 Hao Y, Wang K, Wang Z, Liu Y, Ma D, Wang Q. J. Agric. Food Chem. 2020; 68: 8764
  • 190 Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Heterocycles 1997; 46: 541
  • 191 Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA. J. Am. Chem. Soc. 1966; 88: 3888
  • 192 Ganesan JS, Gandhi S, Radhakrishnan K, Balasubramaniem A, Sepperumal M, Ayyanar S. Spectrochim. Acta, Part A 2019; 219: 33
  • 193 Maity D, Manna AK, Karthigeyan D, Kundu TK, Pati SK, Govindaraju T. Chem. Eur. J. 2011; 17: 11152
  • 194 Wu G, Kong F, Li J, Chen W, Zhang C, Chen Q, Zhang X, Dai S. Synth. Met. 2013; 180: 9
  • 195 Akers WJ, Cupps JM, Haidekker MA. Biorheology 2005; 42: 335
  • 196 Grieco PA, Bahsas A. Tetrahedron 1988; 29: 5855
  • 197 Tolstikov AG, Savchenko RG, Lukina ES, Afon’kina SR, Nedopekin DV, Khalilov LM, Odinokov VN. Izv. Akad. Nauk. Ser. Khim. 2013; 62: 2377
  • 198 Wang C, Han ZY, Luo HW, Gong LZ. Org. Lett. 2010; 12: 2266
  • 199 Simões JB, De Fátima Â, Sabino AA, De Aquino FJ. T, Da Silva DL, Barbosa LC. A, Fernandes SA. Org. Biomol. Chem. 2013; 11: 5069
  • 200 Kobayashi S, Miyamura H. JP5293651B2, 2013
  • 201 Braga IB, Castañeda SM. B, Vitor De Assis J, Barros AO, Amarante GW, Valdo AK. S. M, Martins FT, Rosolen AF. D. P, Pilau E, Fernandes SA. J. Org. Chem. 2020; 85: 15622
  • 202 Kaboudin B, Sohrabi M, Kazemi F. J. Heterocycl. Chem. 2021; 58: 1594