Synthesis 2022; 54(21): 4784-4794
DOI: 10.1055/a-1802-6793
special topic
Asymmetric C–H Functionalization

Synthesis of P- and S-Stereogenic Compounds via Enantioselective C–H Functionalization

Pu-Fan Qian
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. of China
,
Jun-Yi Li
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. of China
,
Tao Zhou
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. of China
,
Bing-Feng Shi
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. of China
b   Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. of China
c   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China (NSFC) (21925109 and 21801223), the Open Research Fund of the School of Chemistry and Chemical Engineering of Henan Normal University and the Center of Chemistry for Frontier Technologies of Zhejiang University is gratefully acknowledged.


Abstract

Transition metal-catalyzed enantioselective C–H functionalization has emerged as an efficient and powerful strategy to access various chiral molecules. Recently, this strategy has also provided a complementary pathway to the construction of P- and S-stereogenic compounds. In this short review, we summarize the development and applications of various catalytic systems: Pd(II)/mono-N-protected amino acids (MPAA), Pd(0)/trivalent phosphorus chiral ligands, chiral cyclopentadienyl-ligated metal catalysts [CpxM(III)] (M = Rh, Ir), half-sandwich d6 Ir(III) and Ru(II) with a chiral carboxylic acid (CCA) ligand, Ir(I)/chiral bidentate boryl ligand, and Ir(I)/chiral cation, for accessing these chiral compounds via enantioselective C–H functionalization.

1 Introduction

2 Pd(II)/Mono-N-protected Amino Acids

3 Pd(0)/Trivalent Phosphorus Chiral Ligands

4 Chiral Cyclopentadienyl-Ligated Metal Catalysts [CpxM(III)] (M = Rh, Ir)

5 Half-sandwich d6 Ir(III) and Ru(II) with a Chiral Carboxylic Acid (CCA) Ligand

6 Ir(I)/Chiral Bidentate Boryl Ligand

7 Ir(I)/Chiral Cation

8 Conclusion and Outlook



Publication History

Received: 22 February 2022

Accepted after revision: 18 March 2022

Accepted Manuscript online:
18 March 2022

Article published online:
12 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected examples of P-stereogenic bioactive compounds, see:
    • 1a Hecker SJ, Erion MD. J. Med. Chem. 2008; 51: 2328
    • 1b Clarion L, Jacquard C, Sainte-Catherine O, Decoux M, Loiseau S, Rolland M, Lecouvey M, Hugnot J.-P, Volle J.-N, Virieux D, Pirat J.-L, Bakalara N. J. Med. Chem. 2014; 57: 8293
    • 1c Pradere U, Garnier-Amblard EC, Coats SJ, Amblard F, Schinazi RF. Chem. Rev. 2014; 114: 9154
    • 1d Iwamoto N, Butler DC. D, Svrzikapa N, Mohapatra S, Zlatev I, Sah DW. Y, Meena, Standley SM, Lu G, Apponi LH, Frank-Kamenetsky M, Zhang JJ, Vargeese C, Verdine GL. Nat. Biotechnol. 2017; 35: 845
    • 1e Mehellou Y, Rattan HS, Balzarini J. J. Med. Chem. 2018; 61: 2211

      For selective examples of S-stereogenic bioactive compounds, see:
    • 2a Bentley R. Chem. Soc. Rev. 2005; 34: 609
    • 2b Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
    • 2c Lindberg P, Braendstroem A, Wallmark B, Mattsson H, Rikner L, Hoffmann KJ. Med. Res. Rev. 1990; 10: 1
    • 2d Maguire AR, Papot S, Ford A, Touhey S, O’Connor R, Clynes M. Synlett 2001; 41
    • 2e Osorio-Lozada A, Prisinzano T, Olivo HF. Tetrahedron: Asymmetry 2004; 15: 3811
    • 3a Tang W, Zhang X. Chem. Rev. 2003; 103: 3029 (b)
    • 3b van Leeuwen PW. N. M, Kamer PC. J, Claver C, Pàmies O, Diéguez M. Chem. Rev. 2011; 111: 2077
    • 3c Fernández-Pérez H, Etayo P, Panossian A, Vidal-Ferran A. Chem. Rev. 2011; 111: 2119
    • 3d Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 4a Carreno MC, Hernandez-Torres G, Ribagorda M, Urbano A. Chem. Commun. 2009; 6129
    • 4b Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
    • 4c Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
    • 4d Otocka S, Kwiatkowska M, Madalińska L, Kielbasiński P. Chem. Rev. 2017; 117: 4147
    • 4e Jia T, Wang M, Liao J. Top. Curr. Chem. 2019; 377: 1

      For reviews on asymmetric syntheses of P-stereogenic compounds, see:
    • 5a Grabulosa A, Granell J, Muller G. Coord. Chem. Rev. 2007; 251: 25
    • 5b Harvey JS, Gouverneur V. Chem. Commun. 2010; 46: 7477
    • 5c Kolo-diazhnyi OI. Tetrahedron: Asymmetry 2012; 23: 1
    • 5d Wauters I, Debrouwer W, Stevens CV. Beilstein J. Org. Chem. 2014; 10: 1064
    • 5e Dutartre M, Bayardon J, Juge SA. Chem. Soc. Rev. 2016; 45: 5771
    • 5f Ye X, Peng L, Bao X, Tan C.-H, Wang H. Green Synth. Catal. 2021; 2: 6

      For reviews on asymmetric syntheses of S-stereogenic compounds, see:
    • 6a Fernandez I, Khiar N. Chem. Rev. 2003; 103: 3651
    • 6b Wojaczyńska E, Wojaczyński J. Chem. Rev. 2010; 110: 4303
    • 6c Wojaczyńska E, Wojaczyński J. Chem. Rev. 2020; 120: 4578
    • 8a Zhang Q, Shi B.-F. Acc. Chem. Res. 2021; 54: 2750
    • 8b Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
    • 9a Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 9b Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514
    • 9c Dong Y, Liu R, Wang W. Green Synth. Catal. 2020; 1: 83
    • 9d Liu C.-X, Zhang W.-W, Yin S.-Y, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 14025
    • 9e Wu Y.-J, Liao G, Shi B.-F. Green Synth. Catal. 2022; 4: in press DOI: 10.1016/j.gresc.2021.12.005.
    • 10a Gao D.-W, Gu Q, Zheng C, You S.-L. Acc. Chem. Res. 2017; 50: 351
    • 10b Huang J.-P, Gu Q, You S.-L. Chin. J. Org. Chem. 2018; 38: 51
    • 10c Liu C.-X, Gu Q, You S.-L. Trends Chem. 2020; 2: 737
    • 11a Diesel J, Cramer N. ACS Catal. 2019; 9: 9164
    • 11b Liu W, Ke J, He C. Chem. Sci. 2021; 12: 10972
    • 11c Wu G.-J, Tan D.-X, Han F.-S. Acc. Chem. Res. 2021; 54: 4354
  • 12 Yu X, Zhang Z.-Z, Niu J.-L, Shi B.-F. Org. Chem. Front. 2022; 9: 1458
  • 13 Sumit, Chandra D, Sharma U. Org. Biomol. Chem. 2021; 19: 4014
    • 14a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 14b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 14c He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 14d Liu B, Romine AM, Rubel CZ, Engle K, Shi B.-F. Chem. Rev. 2021; 121: 14957
  • 15 Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882
    • 16a Engle KM, Yu J.-Q. J. Org. Chem. 2013; 78: 8927
    • 16b Shao Q, Wu K, Zhuang Z, Qian S, Yu J.-Q. Acc. Chem. Res. 2020; 53: 833
  • 17 Du Z.-J, Guan J, Wu G.-J, Xu P, Gao L.-X, Han F.-S. J. Am. Chem. Soc. 2015; 137: 632
  • 18 Guan J, Wu G.-J, Han F.-S. Chem. Eur. J. 2014; 20: 3301
  • 19 Qin X.-L, Li A, Han F.-S. J. Am. Chem. Soc. 2021; 143: 2994
  • 20 Zhu Y.-C, Li Y, Zhang B.-C, Zhang F.-X, Yang Y.-N, Wang X.-S. Angew. Chem. Int. Ed. 2018; 57: 5129
  • 21 Zhou T, Jiang M.-X, Qian P.-F, Yao Q.-J, Xu X.-T, Zhang K, Shi B.-F. Org. Lett. 2021; 23: 7910
    • 22a Jin L, Yao Q.-J, Xie P.-P, Li Y, Zhan B.-B, Han Y.-Q, Hong X, Shi B.-F. Chem 2020; 6: 497
    • 22b Yao Q.-J, Xie P.-P, Wu Y.-J, Feng Y.-L, Teng M.-Y, Hong X, Shi B.-F. J. Am. Chem. Soc. 2020; 142: 18266
    • 22c Wu Y.-J, Xie P.-P, Zhou G, Yao Q.-J, Hong X, Shi B.-F. Chem. Sci. 2021; 12: 9391
  • 23 Mukherjee K, Grimblat N, Sau S, Ghosh K, Shankar M, Gandon V, Sahoo A.-K. Chem. Sci. 2021; 12: 14863
    • 24a Pedroni J, Cramer N. Chem. Commun. 2015; 51: 17647
    • 24b Vyhivskyi O, Kudashev A, Miyakoshi T, Baudoin O. Chem. Eur. J. 2021; 27: 1231
    • 24c Zhan B.-B, Jin L, Shi B.-F. Trends Chem. 2022; 4: 220
  • 25 Lin Z.-Q, Wang W.-Z, Yan S.-B, Duan W.-L. Angew. Chem. Int. Ed. 2015; 54: 6265
  • 26 Liu L, Zhang A.-A, Wang Y, Zhang F, Zuo Z, Zhao W.-X, Feng C.-L, Ma W. Org. Lett. 2015; 17: 2046
  • 27 Xu G, Li M, Wang S, Tang W. Org. Chem. Front. 2015; 2: 1342
  • 28 Tang W, Capacci AG, Wei X, Li W, White A, Patel ND, Savoie J, Gao JJ, Rodriguez S, Qu B, Haddad N, Lu BZ, Krishnamurthy D, Yee NK, Senanayake CH. Angew. Chem. Int. Ed. 2010; 49: 5879
    • 29a Han ZS, Goyal N, Herbage MA, Sieber JD, Qu B, Xu Y, Li Z, Reeves JT, Desrosiers J.-N, Ma S, Grinberg N, Lee H, Mangunuru HP. R, Zhang Y, Krishnamurthy D, Lu BZ, Song JJ, Wang G, Senanayake CH. J. Am. Chem. Soc. 2013; 135: 2474
    • 29b Berger O, Montchamp J.-L. Angew. Chem. Int. Ed. 2013; 52: 11377
  • 30 Lin Y, Ma W.-Y, Sun Q.-Y, Cui Y.-M, Xu L.-W. Synlett 2017; 28: 1432
  • 31 Li Z, Lin Z.-Q, Yan C.-G, Duan W.-L. Organometallics 2019; 38: 3916
  • 32 Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
  • 33 Ye B, Cramer N. Science 2012; 338: 504
    • 34a Mas-Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 13198
    • 34b Wang Q, Liu C.-X, Gu Q, You S.-L. Sci. Bull. 2021; 66: 210
    • 34c Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 42: 6512
  • 35 Jang Y.-S, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088
  • 36 Jang Y.-S, Wozńiak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
  • 37 Sun Y, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 364
  • 38 Sun Y, Cramer N. Chem. Sci. 2018; 9: 2981
  • 39 Hu P, Kong L, Wang F, Zhu X, Li X. Angew. Chem. Int. Ed. 2021; 60: 20424
  • 40 Shen B, Wan B, Li X. Angew. Chem. Int. Ed. 2018; 57: 15534
  • 41 Sun Y, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 15539
  • 42 Brauns M, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 8902
    • 44a Gwon D, Lee D, Kim J, Park S, Chang S. Chem. Eur. J. 2014; 20: 12421
    • 44b Gwon D, Park S, Chang S. Tetrahedron 2015; 71: 4504
    • 45a Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
    • 45b Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
    • 45c Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
    • 45d Liu Y.-H, Li P.-X, Yao Q.-J, Zhang Z.-Z, Huang D.-Y, Le MD, Song H, Liu L, Shi B.-F. Org. Lett. 2019; 21: 1895
  • 46 Zhang C.-W, Hu X.-Q, Dai Y.-H, Yin P, Wang C, Duan W.-L. ACS Catal. 2022; 12: 193
  • 47 Liu W, Yang W, Zhu J, Guo Y, Wang N, Ke J, Yu P, He C. ACS Catal. 2020; 10: 7207
  • 48 Zhou T, Qian P.-F, Li J.-Y, Zhou Y.-B, Li H.-C, Chen H.-Y, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 6810
  • 49 Huang L.-T, Hirata Y, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Synthesis 2022; 54 in press; DOI: DOI: 10.1055/a-1588-0072.
  • 50 Song S.-Y, Li Y, Ke Z, Xu S. ACS Catal. 2021; 11: 13445
  • 51 Genov GR, Douthwaite JL, Lahdenperä AS. K, Gibson DC, Phipps RJ. Science 2020; 367: 1246