Synthesis 2022; 54(20): 4461-4471
DOI: 10.1055/a-1811-7948
feature

Assembly of the Hydroxycinnoline Core via Hydrazide-Assisted Rh(III)-Catalyzed C–H Functionalization and Annulation

Suho Kim
,
Heon Kyu Park
,
Ju Young Kang
,
Neeraj Kumar Mishra
,
In Su Kim
This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (nos. 2019R1A4A2001451, 2020R1A2C3005357, and 2020R1I1A1A01052800).


Abstract

The structural modification of phthalazinones and indazolones has emerged as a pivotal topic in catalytic C–H functionalization events. Herein we report the hydrazide-assisted rhodium(III)-catalyzed cross-coupling reactions of N-arylphthalazinones and N-arylindazolones with vinylene carbonate. This method provides direct access to tetracyclic hydroxycinnolines. Complete site-selectivity and functional group compatibility were observed.

Supporting Information



Publication History

Received: 24 February 2022

Accepted after revision: 30 March 2022

Accepted Manuscript online:
30 March 2022

Article published online:
28 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews on the biological activities of cinnolines, see:
    • 1a Han YT, Jung J.-W, Kim N.-J. Curr. Org. Chem. 2017; 21: 1265
    • 1b Szumilak M, Stanczak A. Molecules 2019; 24: 2271
  • 2 Shen Y, Shang Z, Yang Y, Zhu S, Qian X, Shi P, Zheng J, Yang Y. J. Org. Chem. 2015; 80: 5906
    • 3a Tsuji H, Yokoi Y, Sato Y, Tanaka H, Nakamura E. Chem. Asian J. 2011; 6: 2005
    • 3b Chen J.-C, Wu H.-C, Chiang C.-J, Chen T, Xing L. J. Mater. Chem. C 2014; 2: 4835
    • 4a Al-Awadi NA, Elnagdi MH, Ibrahim Y, Kaul K, Kumar A. Tetrahedron 2001; 57: 1609
    • 4b Gomaa MA.-M. Tetrahedron Lett. 2003; 44: 3493
    • 4c Jurberg ID, Gagosz F. J. Organomet. Chem. 2011; 696: 37
  • 5 Alhambra C, Becker C, Blake T, Chang A, Damewood JR. Jr, Daniels T, Dembofsky BT, Gurley DA, Hall JE, Herzog KJ, Horchler CL, Ohnmacht CJ, Schmiesing RJ, Dudley A, Ribadeneira MD, Knappenberger KS, Maciag C, Stein MM, Chopra M, Liu XF, Christian EP, Arriza JL, Chapdelaine M. Bioorg. Med. Chem. 2011; 19: 2927
  • 6 Alajarin M, Bonillo B, Marin-Luna M, Vidal A, Orenes R.-A. J. Org. Chem. 2009; 74: 3558
    • 7a Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 7b Gandeepan P, Cheng C.-H. Chem. Asian J. 2016; 11: 448
    • 7c Li S.-S, Qin L, Dong L. Org. Biomol. Chem. 2016; 14: 4554
    • 7d Mishra NK, Park J, Oh H, Han SH, Kim IS. Tetrahedron 2018; 74: 6769
    • 7e Sharma S, Han SH, Han S, Ji W, Oh J, Lee S.-Y, Oh JS, Jung YH, Kim IS. Org. Lett. 2015; 17: 2852
  • 8 Rajkumar S, Savarimuthu SA, Kumaran RS, Nagaraja C, Gandhi T. Chem. Commun. 2016; 52: 2509
  • 9 Mayakrishnan S, Arun Y, Balachandran C, Emi N, Muralidharan D, Perumal PT. Org. Biomol. Chem. 2016; 14: 1958
    • 10a Karishma P, Mahesha CK, Agarwal DS, Mandal SK, Sakhuja R. J. Org. Chem. 2018; 83: 11661
    • 10b Karishma P, Mahesha CK, Mandal SK, Sakhuja R. J. Org. Chem. 2021; 86: 2734
    • 11a Wu X, Ji H. J. Org. Chem. 2018; 83: 4650
    • 11b Kim K, Han SH, Jeoung D, Ghosh P, Kim S, Kim SJ, Ku J.-M, Mishra NK, Kim IS. J. Org. Chem. 2020; 85: 2520
    • 12a Hara H, Hirano M, Tanaka K. Org. Lett. 2009; 11: 1337
    • 12b Wang Z, Xue F, Hayashi T. Angew. Chem. Int. Ed. 2019; 58: 11054

      For selected examples, see:
    • 13a Nishii Y, Miura M. ACS Catal. 2020; 10: 9747
    • 13b Kato M, Ghosh K, Nishii Y, Miura M. Chem. Commun. 2021; 57: 8280
    • 13c Li X, Huang T, Song Y, Qi Y, Li L, Li Y, Xiao Q, Zhang Y. Org. Lett. 2020; 22: 5925
    • 13d Park MS, Moon K, Oh H, Lee JY, Ghosh P, Kang JY, Park JS, Mishra NK, Kim IS. Org. Lett. 2021; 23: 5518
    • 13e Kim S, Choi SB, Kang JY, An W, Lee SH, Oh H, Ghosh P, Mishra NK, Kim IS. Asian J. Org. Chem. 2021; 10: 3005
    • 13f Wang C, Fan X, Chen F, Qian P.-C, Cheng J. Chem. Commun. 2021; 57: 3929
    • 13g Nan J, Ma Q, Yin J, Liang C, Tian L, Ma Y. Org. Chem. Front. 2021; 8: 1764
  • 14 CCDC 2154376 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
    • 15a Fletcher SR, McIver E, Lewis S, Burkamp F, Leech C, Mason G, Boyce S, Morrison D, Richards G, Sutton K, Jones AB. Bioorg. Med. Chem. Lett. 2006; 16: 2872
    • 15b Yu W, Guo Z, Orth P, Madison V, Chen L, Dai C, Feltz RJ, Girijavallabhan VM, Kim SH, Kozlowski JA, Lavey BJ, Li D, Lundell D, Niu X, Piwinski JJ, Popovici-Muller J, Rizvi R, Rosner KE, Shankar BB, Shih NY, Siddiqui MA, Sun J, Tong L, Umland S, Wong MK, Yang DY, Zhou G. Bioorg. Med. Chem. Lett. 2010; 20: 1877

      For recent selected examples, see:
    • 16a Lee H, Kang D, Han SH, Chun R, Pandey AK, Mishra NK, Hong S, Kim IS. Angew. Chem. Int. Ed. 2019; 58: 9470
    • 16b Zhang Z, Zhou X.-Y, Wu J.-G, Song L, Yu D.-G. Green Chem. 2020; 22: 28
    • 16c Rajamanickam S, Saraswat M, Venkataramani S, Patel BK. Chem. Sci. 2021; 12: 15318
    • 16d Xu H.-B, Chen Y.-J, Chai X.-Y, Yang J.-H, Xu Y.-J, Dong L. Org. Lett. 2021; 23: 2052
    • 16e Tian S, Luo T, Zhu Y, Wan J.-P. Chin. Chem. Lett. 2020; 31: 3073
    • 16f Zhang X, Wang P, Zhu L, Chen B. Chin. Chem. Lett. 2021; 32: 695
    • 17a Gogoi K, Bora BR, Borah G, Sarma B, Gogoi S. Chem. Commun. 2021; 57: 1388
    • 17b Kang JY, An W, Kim S, Kwon NY, Jeong T, Ghosh P, Kim HS, Mishra NK, Kim IS. Chem. Commun. 2021; 57: 10947
  • 18 Shen B, Liu S, Zhu L, Zhong K, Liu F, Chen H, Bai R, Lan Y. Organometallics 2020; 39: 2813