Synthesis 2022; 54(22): 4932-4962
DOI: 10.1055/a-1863-8622
special topic
Aryne Chemistry in Synthesis

Aryne Annulations for the Synthesis of Carbocycles and Heterocycles: An Updated Review

Manashi Sarmah
a   Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India
,
Hemanta Hazarika
a   Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
,
Pranjal Gogoi
a   Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
› Author Affiliations
We thank Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial support (Project no. MLP-1015). M.S. thanks the Department of Science and Technology, Science and Engineering Research Board (DST-SERB) for financial assistance in the form of NPDF (PDF/2019/000564). H.H. thanks the Department of Science and Technology, New Delhi, for DST-Inspire Fellowship Grants.


Abstract

Carbocycles and heterocycles are highly relevant structural moieties that have found countless applications in interdisciplinary areas. In this regard, the interesting chemistry of arynes has been embraced by researchers for the synthesis of structurally different polycyclic systems, i.e. carbocycles and heterocycles. In this review, we intended to provide a comprehensive overview on the annulative approach considering Kobayashi’s aryne intermediate as the key reactive species with diverse nucleophilic and electrophilic partners. The review highlights the different aryne annulation reactions adopted for the synthesis of carbocycles and heterocycles (covering articles mainly from around 2010), showcasing their viability towards broad range of substrates bearing diverse functionalities.

1 Introduction

2 Synthesis of Carbocycles

3 Synthesis of Heterocycles

4 Conclusions



Publication History

Received: 23 March 2022

Accepted after revision: 30 May 2022

Accepted Manuscript online:
30 May 2022

Article published online:
12 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
    • 2a Jakopin Z, Dolenc MS. Curr. Med. Chem. 2010; 17: 651
    • 2b Xuan J, Lu L.-Q, Chen J.-R, Xiao W.-J. Eur. J. Org. Chem. 2013; 6755
    • 2c Vo C.-VT, Bode JW. J. Org. Chem. 2014; 79: 2809
    • 2d Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
    • 2e Allais C, Grassot J.-M, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829
    • 2f Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 2g Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Rev. 2015; 115: 5301
    • 4a Nicolaou KC, Edmonds DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 4b Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 4c Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 4d Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
    • 4e Wang Y, Lu H, Xu P.-F. Acc. Chem. Res. 2015; 48: 1832
  • 5 Ito H, Ozaki K, Itami K. Angew. Chem. Int. Ed. 2017; 56: 2
    • 6a He J, Qiu D, Li Y. Acc. Chem. Res. 2020; 53: 508
    • 6b Pozo I, Guitián E, Pérez D, Peña D. Acc. Chem. Res. 2019; 52: 2472
    • 7a Hu Y, Huang Y, Zhao X, Gao Y, Li X, Chen Q. Org. Biomol. Chem. 2021; 19: 7066
    • 7b Yang Y, Xu Y, Jones CR. Eur. J. Org. Chem. 2019; 5196
    • 7c Kubo T, Fujita T, Ichikawa J. Chem. Lett. 2020; 49: 264
    • 7d Roy T, Thangaraj M, Kaicharla T, Kamath RV, Gonnade RG, Biju AT. Org. Lett. 2016; 18: 5428
    • 7e Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
  • 9 Dubrovskiy AV, Markina NA, Larock RC. Org. Biomol. Chem. 2013; 11: 191
  • 10 Worlikar SA, Larock RC. Org. Lett. 2009; 11: 2413
  • 11 Bhojgude SS, Kaicharla T, Bhunia A, Biju AT. Org. Lett. 2012; 14: 4098
  • 12 Schirnetta M, Stelzer F. Macromol. Chem. Phys. 1994; 195: 2699
  • 13 Adam W, De Lucchi O, Erden I. J. Am. Chem. Soc. 1980; 102: 4806
  • 14 Kaicharla T, Bhojgude SS, Biju AT. Org. Lett. 2012; 14: 6238
  • 15 Bhojgude SS, Thangaraj M, Suresh E, Biju AT. Org. Lett. 2014; 16: 3576
  • 16 Thangaraj M, Bhojgude SS, Bisht RH, Gonnade RG, Biju AT. J. Org. Chem. 2014; 79: 4757
  • 17 Yao T, Zhang H, Zhao Y. Org. Lett. 2016; 18: 2532
  • 18 Lin Q.-X, Ho T.-K. Tetrahedron 2013; 69: 2996
  • 19 Bhojgude SS, Bhunia A, Gonnade RG, Biju AT. Org. Lett. 2014; 16: 676
  • 20 Samineni R, Srihari P, Mehta G. Org. Lett. 2016; 18: 2832
  • 21 Zuo Z, Wang H, Diao Y, Ge Y, Liu J, Luan X. ACS Catal. 2018; 8: 11029
  • 22 Wei Y.-L, Dauvergne G, Rodriguez J, Coquerel Y. J. Am. Chem. Soc. 2020; 142: 16921
  • 23 Lu C, Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 8648
  • 24 Zhao J, Li H, Li P, Wang L. J. Org. Chem. 2019; 84: 9007
  • 25 Yang Y, Huang H, Wu L, Liang Y. Org. Biomol. Chem. 2014; 12: 5351
  • 26 Meng YY, Si XJ, Song YY, Zhou HM, Xu F. Chem. Commun. 2019; 55: 9507
  • 27 Zhang TY, Lin JB, Li QZ, Kang JC, Pan JL, Hou SH, Chen C, Zhang SY. Org. Lett. 2017; 19: 1764
  • 28 Thorat VH, Upadhyay NS, Murakami M, Cheng CH. Adv. Synth. Catal. 2018; 360: 284
  • 29 Pimparkar S, Jeganmohan M. Chem. Commun. 2014; 50: 12116
  • 30 Peng X, Wang W, Jiang C, Sun D, Xu Z, Tung C.-H. Org. Lett. 2014; 16: 5354
  • 31 Feng M, Tang B, Xu H.-X, Jiang X. Org. Lett. 2016; 18: 4352
  • 32 Yao T, He D. Org. Lett. 2017; 19: 842
  • 33 Rogness DC, Markina NA, Waldo JP, Larock RC. J. Org. Chem. 2012; 77: 2743
  • 34 Bunescu A, Piemontesi C, Wang Q, Zhu J. Chem. Commun. 2013; 49: 10284
  • 35 Zhao J, Wu C, Li P, Ai W, Chen H, Wang C, Larock RC, Shi F. J. Org. Chem. 2011; 76: 6837
  • 36 Talukdar R, Singh V, Mourya H, Nasibullah M, Tiwari B. J. Org. Chem. 2021; 86: 12277
  • 37 Chen Y, Willis MC. Org. Lett. 2015; 17: 4786
  • 38 Li L, Qiu D, Shi J, Li Y. Org. Lett. 2016; 18: 3726
  • 39 Shin J, Lee J, Ko D, De N, Yoo EJ. Org. Lett. 2017; 19: 2901
  • 40 Lu C, Markina NA, Larock RC. J. Org. Chem. 2012; 77: 11153
  • 41 Sha F, Tao Y, Tang C.-Y, Zhang F, Wu X.-Y. J. Org. Chem. 2015; 80: 8122
  • 42 Xu D, Zhao Y, Song D, Zhong Z, Feng S, Xie X, Wang X, She X. Org. Lett. 2017; 19: 3600
  • 43 Jin Q, Zhang D, Zhang J. RSC Adv. 2020; 10: 30620
  • 44 Singh R, Nagesh K, Yugandhar D, Prasanthi AV. G. Org. Lett. 2018; 20: 4848
  • 45 Li J, Wang N, Li C, Jia X. Org. Lett. 2012; 14: 4994
  • 46 Castillo J.-C, Quiroga J, Abonia R, Rodriguez J, Coquerel Y. Org. Lett. 2015; 17: 3374
  • 47 Xu H, He J, Shi J, Tan L, Qiu D, Luo X, Li Y. J. Am. Chem. Soc. 2018; 140: 3555
  • 48 Dorziotis I, Houpis I, Molina A, Volante R. WO 9818815A1, 1998
  • 49 Fang Y, Rogness DC, Larock RC, Shi F. J. Org. Chem. 2012; 77: 6262
  • 50 Allan KM, Stoltz BM. J. Am. Chem. Soc. 2008; 130: 17270
    • 51a Kiss M, Russell-Maynard J, Joule JA. Tetrahedron Lett. 1987; 28: 2187
    • 51b Yates ND, Peters DA, Allway PA, Beddoes RL, Scopes DI. C, Joule JA. Heterocycles 1995; 40: 331
  • 52 Tadross PM, Virgil SC, Stoltz BM. Org. Lett. 2010; 12: 1612
  • 53 Allan KM, Gilmore CD, Stoltz BM. Angew. Chem. Int. Ed. 2011; 50: 4488
  • 54 Fujimoto H, Kusano M, Kodama T, Tobisu M. Org. Lett. 2020; 22: 2293
  • 55 Li R.-J, Pi S.-F, Liang Y, Wang Z.-Q, Song R.-J, Chen G.-X, Li J.-H. Chem. Commun. 2010; 46: 8183
  • 56 Prévost S, Dezaire A, Escargueil A. J. Org. Chem. 2018; 83: 4871
  • 57 Neog K, Borah A, Gogoi P. J. Org. Chem. 2016; 81: 11971
  • 58 Neog K, Dutta D, Das B, Gogoi P. Org. Lett. 2017; 19: 730