Synthesis 2022; 54(24): 5337-5359
DOI: 10.1055/a-1918-4338
review

Metal-Catalyzed C–H Bond Oxidation in the Total Synthesis of Natural and Unnatural Products

Victor C. S. Santana
,
Milena C. V. Fernandes
,
Isadora Cappuccelli
,
Ana Carolina G. Richieri
,
We are grateful to São Paulo Research Foundation (FAPESP) for the financial support for this work (grant 2018/04837-6) and fellowships to V. C. S. Santana and M. C. V. Fernandes (grants 2019/27528-1 and 2021/07167-4). We also thank CNPq, CAPES, and FAEPEX-UNICAMP (2575/21).


Abstract

C–H bond oxidation is a powerful means for oxygen incorporation in organic molecules. Its use results in fast structural diversification and in a new way of thinking about retrosynthetic disconnections. In this review, we present the application of five metal-catalyzed methodologies for C(sp 3)–H oxidation in the total synthesis of natural and unnatural products, covering the period of 2004–2022.

1 Introduction

2 Copper-Mediated Hydroxylation of Methylenes β to Imines

3 Palladium Acetoxylation of Methyl Groups β to Oximes

4 Palladium-Mediated Allylic C–H Bond Oxidation of Terminal Olefins

5 Iron- and Manganese-Mediated Aliphatic Oxidation

6 Miscellaneous

7 Conclusion



Publication History

Received: 30 April 2022

Accepted after revision: 04 August 2022

Accepted Manuscript online:
04 August 2022

Article published online:
06 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Nelson MJ, Seitz S. In Active Oxygen in Biochemistry . Valentine JS, Foote CS, Greenberg A, Liebman JF. Chapman and Hall; Glasgow: 1995: 313
    • 1b Zurlo G, Guo J, Takada M, Wei W, Zhang Q. Biochim. Biophys. Acta 2016; 1866: 208
  • 2 Danielson PB. Curr. Drug Metab. 2002; 3: 561
  • 3 Bugg TD. H. Tetrahedron 2003; 59: 7075
  • 4 Godula K, Sames D. Science 2006; 312: 67
    • 5a Milas NA, Terry EM. J. Am. Chem. Soc. 1925; 47: 1412
    • 5b Milas NA, Terry EM. J. Am. Chem. Soc. 1926; 48: 2647
    • 5c Milas NA. J. Am. Chem. Soc. 1927; 49: 2005
  • 6 Holton RA, Kim H.-B, Somoza C, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S, Nadizadeh H, Suzuki Y, Tao C, Vu P, Tang S, Zhang P, Murthi KK, Gentile LN, Liu JH. J. Am. Chem. Soc. 1994; 116: 1599
  • 7 Haries C. Justus Liebigs Ann. Chem. 1905; 343: 311
  • 8 Johnson WS, Gravestock MB, McCarry BE. J. Am. Chem. Soc. 1971; 93: 4332
  • 9 Sharpless KB, Michaelson RC. J. Am. Chem. Soc. 1973; 95: 6136
  • 10 Tian X, Hudlicky T, Koenigsberger K. J. Am. Chem. Soc. 1995; 117: 3643
    • 11a Clardy J, Walsh C. Nature 2004; 432: 829
    • 11b Dong J, Fueyo-Fernández E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Angew. Chem. Int. Ed. 2018; 57: 9238
  • 12 Shenvi RA, O’Malley DP, Baran PS. Acc. Chem. Res. 2009; 42: 530
  • 13 White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
    • 14a Breslow R, Baldwin SW. J. Am. Chem. Soc. 1970; 92: 732
    • 14b Shilov AE, Shteinman AA. Coord. Chem. Rev. 1977; 24: 97
    • 14c Barton DH. R, Crich D. Tetrahedron 1985; 41: 4359
  • 16 Trost BM, Tang W. J. Am. Chem. Soc. 2002; 124: 14542
  • 17 D’Accolti L, Annese C, Fusco C. Chem. Eur. J. 2019; 25: 12003
  • 18 Kanda Y, Nakamura H, Umemiya S, Puthukanoori RK, Appala VR. M, Gaddamanugu GK, Paraselli BR, Baran PS. J. Am. Chem. Soc. 2020; 142: 10526
  • 19 Faisal M, Larik FA, Saeed A, Shah AH, Channar PA, Khan DM, Ali M, Kumar R. Curr. Org. Chem. 2018; 22: 1836

    • For recent reviews of C–H functionalization in total synthesis, see:
    • 20a Qiu Y, Gao S. Nat. Prod. Rep. 2016; 33: 562
    • 20b Brady PB, Bhat V. Eur. J. Org. Chem. 2017; 2017: 5179
    • 20c Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
    • 20d Liu Y, Tou T, Wang H.-X, Tang Z, Zhou C.-Y, Che C.-M. Chem. Soc. Rev. 2020; 49: 5310
    • 21a Schönecker B, Zheldakova T, Liu Y, Kötteritzsch M, Günther W, Görls H. Angew. Chem. Int. Ed. 2003; 42: 3240
    • 21b Schönecker B, Zheldakova T, Lange C, Günther W, Görls H, Bohl M. Chem. Eur. J. 2004; 10: 6029
    • 21c Schönecker B, Lange C, Zheldakova T, Günther W, Görls H, Vaughan G. Tetrahedron 2005; 61: 103
    • 22a See YY, Herrmann AT, Aihara Y, Baran PS. J. Am. Chem. Soc. 2015; 137: 13776
    • 22b Trammell R, See YY, Herrmann AT, Xie N, Díaz DE, Siegler MA, Baran PS, Garcia-Bosch I. J. Org. Chem. 2017; 82: 7887
  • 24 Giannis A, Heretsch P, Sarli V, Stößel A. Angew. Chem. Int. Ed. 2009; 48: 7911
  • 25 Rabe S, Moschner J, Bantzi M, Heretsch P, Giannis A. Beilstein J. Org. Chem. 2014; 10: 1564
    • 26a Kubo A, Nakagawa K, Varma RK, Conrad NK, Cheng JQ, Lee W.-C, Testa JR, Johnson BE, Kaye FJ, Kelley MJ. Clin. Cancer Res. 1999; 5: 4279
    • 26b Huang A, Garraway LA, Ashworth A, Weber B. Nat. Rev. Drug Discovery 2020; 19: 23
    • 26c Kaelin WG. Jr. Nat. Rev. Cancer 2005; 5: 689
  • 27 Fortner KC, Kato D, Tanaka Y, Shair MD. J. Am. Chem. Soc. 2010; 132: 275

    • For other total syntheses of cephalostatin 1, see:
    • 28a LaCour TG, Guo C, Bhandaru S, Boyd MR, Fuchs PL. J. Am. Chem. Soc. 1998; 120: 692
    • 28b Shi Y, Xiao Q, Lan Q, Wang D.-H, Jia L.-Q, Tang X.-H, Zhou T, Li M, Tian W.-S. Tetrahedron 2019; 75: 1722
    • 28c Shi Y, Jia L, Xiao Q, Lan Q, Tang X, Wang D, Li M, Ji Y, Zhou T, Tian W. Asian J. Chem. 2011; 6: 786
  • 29 Offei SD, Arman HD, Baig MO, Chavez LS, Paladini CA, Yoshimoto FK. Steroids 2018; 140: 185
  • 30 Fukuzawa S, Matsunaga S, Fusetani N. J. Org. Chem. 1995; 60: 608
  • 31 Nakayama Y, Maser MR, Okita T, Dubrovskiy AV, Campbell TL, Reisman SE. J. Am. Chem. Soc. 2021; 143: 4187
  • 32 Zhou Z.-W, Yin S, Zhang H.-Y, Fu Y, Yang S.-P, Wang X.-N, Wu Y, Tang X.-C, Yue J.-M. Org. Lett. 2008; 10: 465
  • 33 Chen X, Zhang D, Xu D, Zhou H, Xu G. Org. Lett. 2020; 22: 6993
  • 34 Fan Y.-Y, Zhang H, Zhou Y, Liu H.-B, Tang W, Zhou B, Zuo J.-P, Yue J.-M. J. Am. Chem. Soc. 2015; 137: 138
  • 35 Xie J, Liu X, Zhang N, Choi S, Dong G. J. Am. Chem. Soc. 2021; 143: 19311
  • 36 Scher JM, Schinkovitz A, Zapp J, Wang Y, Franzblau SG, Becker H, Lankin DC, Pauli GF. J. Nat. Prod. 2010; 73: 656
  • 37 Wein LA, Wurst K, Magauer T. Angew. Chem. Int. Ed. 2022; 61: e202113829
    • 38a Baldwin JE, Nájera C, Yus M. J. Chem. Soc., Chem. Commun. 1985; 126
    • 38b Baldwin JE, Jones RH, Nájera C, Yus M. Tetrahedron 1985; 41: 699
    • 39a Desai LV, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542
    • 39b Neufeldt SR, Sanford MS. Oeg. Lett. 2010; 12: 532
  • 40 Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
  • 41 For other total synthesis of rostratone, see: Gao H.-T, Wang B.-L, Li W.-DZ. Tetrahedron 2014; 70: 9436
  • 42 Garbarino JA, Chamy MC, Montagna MP, Gambaro V. Phytochemistry 1993; 32: 987
    • 43a Justicia J, Oltra JE, Cuerva JM. Tetrahedron Lett. 2004; 45: 4293
    • 43b Justicia J, Oltra JE, Cuerva JM. J. Org. Chem. 2005; 70: 8265

      For other total syntheses of jiadifenolide, see:
    • 44a Xu J, Trzoss L, Chang WK, Theodorakis EA. Angew. Chem. Int. Ed. 2011; 50: 3672
    • 44b Paterson I, Xuan M, Dalby SM. Angew. Chem. Int. Ed. 2014; 53: 7286
    • 44c Lu H.-H, Martinez MD, Shenvi RA. Nat. Chem. 2015; 7: 604
    • 44d Shen Y, Li L, Pan Z, Wang Y, Li J, Wang K, Wang X, Zhang Y, Hu T, Zhang Y. Org. Lett. 2015; 17: 5480
    • 44e Gomes J, Daeppen C, Liffert R, Roesslein J, Kaufmann E, Heikinheimo A, Neuburger M, Gademann K. J. Org. Chem. 2016; 81: 11017
  • 45 Kubo M, Okada C, Huang J.-M, Harada K, Hioki H, Fukuyama Y. Org. Lett. 2009; 11: 5190
  • 46 Siler DA, Mighion JD, Sorensen EJ. Angew. Chem. Int. Ed. 2014; 53: 5332

    • For other total syntheses of paspaline, see:
    • 47a Smith AB. III, Mewshaw R. J. Am. Chem. Soc. 1985; 107: 1769
    • 47b Kim DE, Zweig JE, Newhouse TR. J. Am. Chem. Soc. 2019; 141: 1479
  • 48 Fehr T, Acklin W. Helv. Chim. Acta 1966; 49: 1907
    • 49a Brnardic E, Doherty JB, Dorsey J, Ellwood C, Fillmore M, Malaska M, Nelson K, Soukri M. WO 2009048559, 2009
    • 49b Garcia ML, Goetz MA, Kaczorowski GJ, McManus OB, Monaghan RL, Strohl WR, Tkacz JS. US 2005239863, 2005
  • 50 Ogata M, Ueda J.-y, Hoshi M, Hashimoto J, Nakashima T, Anzai K, Takagi M, Shin-ya K. J. Antibiot. 2007; 60: 645
  • 52 Takada K, Kajiwara H, Imamura N. J. Nat. Prod. 2010; 73: 698
  • 53 Meng Z, Yu H, Li L, Tao W, Chen H, Wan M, Yang P, Edmonds DJ, Zhong J, Li A. Nat. Commun. 2015; 6: 6096
  • 55 Usmanova SK, Yusupova IM, Tashkhodzhaev B, Bessonova IA. Chem. Nat. Compd. 1995; 31: 83
  • 56 Wang F.-P, Chen Q.-H, Liu X.-Y. Nat. Prod. Rep. 2010; 27: 529
  • 57 Zhou S, Guo R, Yang P, Li A. J. Am. Chem. Soc. 2018; 140: 9025
  • 58 Kim S.-H, Ha T.-K.-Q, Oh WK, Shin J, Oh D.-C. J. Nat. Prod. 2016; 79: 51
  • 59 Song D, Park B. Virus Genes 2012; 44: 167
  • 60 Dethe DH, Shukla M. Chem. Commun. 2021; 57: 10644
  • 61 Bahadoor A, Schneiderman D, Gemmill L, Bosnich W, Blackwell B, Melanson JE, McRae G, Harris LJ. J. Nat. Prod. 2016; 79: 81
    • 62a Lusi RF, Sennari G, Sarpong R. Nat. Chem. 2022; 14: 450
    • 62b Lusi, R. F.; Sennari, G.; Sarpong, R. J. Am. Chem. Soc. 2022, Accepted Manuscript. doi.org/10.1021/jacs.2c08136.
  • 63 De Oliveira BH, dos Santos MC, Leal PC. Phytochemistry 1999; 51: 737
  • 64 Avent AG, Hanson JR, Hitchcock PB, de Oliveira BH. J. Chem. Soc., Perkin Trans. 1 1990; 2661
  • 65 Santana VC. S, Rocha EC. S, Pavan JC. S, Heleno VC. G, de Lucca EC. Jr. J. Org. Chem. 2022; 87: 10462
    • 66a Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
    • 66b Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970
    • 66c Fraunhoffer KJ, Prabagaran N, Sirois LE, White MC. J. Am. Chem. Soc. 2006; 128: 9032
    • 66d Covell DJ, Vermeulen NA, Labenz NA, White MC. Angew. Chem. Int. Ed. 2006; 45: 8217
    • 66e Delcamp JH, White MC. J. Am. Chem. Soc. 2006; 128: 15076
    • 66f Covell DJ, White MC. Angew. Chem. Int. Ed. 2008; 47: 6448
    • 66g Vermeulen NA, Delcamp JH, White MC. J. Am. Chem. Soc. 2010; 132: 11323
    • 66h Gormisky PE, White MC. J. Am. Chem. Soc. 2011; 133: 12584
    • 66i Covell DJ, White MC. Tetrahedron 2013; 69: 7771
    • 66j Osberger TJ, White MC. J. Am. Chem. Soc. 2014; 136: 11176
    • 66k Ammann SE, Rice GT, White MC. J. Am. Chem. Soc. 2014; 136: 10834
    • 66l Ammann SE, Liu W, White MC. Angew. Chem. Int. Ed. 2016; 55: 9571
  • 67 Martin JR, Rosenbrook W. Biochemistry 1967; 6: 435
    • 68a Masamune S, Hirama M, Mori S, Ali SA, Garvey DS. J. Am. Chem. Soc. 1981; 103: 1568
    • 68b Myles DC, Danishefsky SJ, Schulte G. J. Org. Chem. 1990; 55: 1636
    • 68c Evans DA, Kim AS, Metternich R, Novack VJ. J. Am. Chem. Soc. 1998; 120: 5921
    • 68d Crimmons MT, Slade DJ. Org. Lett. 2006; 8: 2191
    • 70a Nakae K, Yoshimoto Y, Sawa T, Homma Y, Hamada M, Takeuchi T, Imoto M. J. Antibiot. 2000; 53: 1130
    • 70b Nakae K, Yoshimoto Y, Ueda M, Sawa T, Takahashi Y, Naganava H, Takeuchi T, Imoto M. J. Antibiot. 2000; 53: 1228
  • 71 Takemoto Y, Nakae K, Kawatani M, Takahashi Y, Naganawa H, Imoto M. J. Antibiot. 2001; 54: 1104
  • 72 Gade NR, Iqbal J. Tetrahedron Lett. 2013; 54: 4225
  • 73 Hohenschutz LD, Bell EA, Jewess PJ, Leworthy DP, Pryce RJ, Arnold E, Clardy J. Phytochemistry 1981; 20: 811
  • 74 Clarke EC, Nofchissey RA, Ye C, Bradfute SB. Glycobiology 2021; 31: 378
  • 75 Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. J. Virol. 2005; 79: 8698
    • 76a Jensen T, Mikkelsen M, Lauritsen A, Andresen TL, Gotfredsen CH, Madsen R. J. Org. Chem. 2009; 74: 8886
    • 76b Louvel J, Botuha C, Chemla F, Demont E, Ferreira F, Pérez-Luna A. Eur. J. Org. Chem. 2010; 2010: 2921
    • 76c Liu G, Wu T.-J, Ruan Y.-P, Huang P.-Q. Chem. Eur. J. 2010; 16: 5755
    • 76d Bowen EG, Wardrop DJ. Org. Lett. 2010; 12: 5330
    • 76e Ritthiwigrom T, Nash RJ, Pyne SG. Tetrahedron 2010; 66: 9340
    • 76f Kalamkar NB, Puranik VG, Dhavale DD. Tetrahedron 2011; 67: 2773
  • 77 Mulzer J, Dehmlow H, Buschmann J, Luger P. J. Org. Chem. 1992; 57: 3194
  • 78 Malik M, Witkowski G, Jarosz S. Org. Lett. 2014; 16: 3816
  • 79 Piao S.-J, Song Y.-L, Jiao W.-H, Yang F, Liu X.-F, Chen W.-S, Han B.-N, Lin H.-W. Org. Lett. 2013; 15: 3526
  • 80 Morrill LA, Susick RB, Chari JV, Garg NK. J. Am. Chem. Soc. 2019; 141: 12423
    • 81a McCallum ME, Rasik CM, Wood JL, Brown MK. J. Am. Chem. Soc. 2016; 138: 2437

    • For other total syntheses of hippolachnin A, see:
    • 81b Ruider SA, Sandmeier T, Carreira EM. Angew. Chem. Int. Ed. 2015; 54: 2378
    • 81c Xu Z.-J, Wu Y. Chem. Eur. J. 2017; 23: 2026
    • 81d Winter N, Trauner D. J. Am. Chem. Soc. 2017; 139: 11706
    • 81e Li Q, Zhao K, Peuronen A, Rissanen K, Enders D, Tang Y. J. Am. Chem. Soc. 2018; 140: 1937
    • 81f Winter N, Rupcic Z, Stadler M, Trauner D. J. Antibiot. 2019; 72: 375
    • 82a Chen MS, White MC. Science 2007; 318: 783
    • 82b Vermeulen NA, Chen MS, White MC. Tetrahedron 2009; 65: 3078
    • 82c Chen MS, White MC. Science 2010; 327: 566
    • 82d Bigi MA, Reed SA, White MC. Nat. Chem. 2011; 3: 216
    • 82e Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
    • 82f Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 14052
    • 82g Howell JM, Feng K, Clark JR, Trzepkowski LJ, White MC. J. Am. Chem. Soc. 2015; 137: 14590
    • 82h Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Nature 2016; 537: 214
    • 82i Nanjo T, de Lucca EC. Jr, White MC. J. Am. Chem. Soc. 2017; 139: 14586
    • 82j Zhao J, Nanjo T, de Lucca EC. Jr, White MC. Nat. Chem. 2019; 11: 213
  • 83 Chen K, Eschenmoser A, Baran PS. Angew. Chem. Int. Ed. 2009; 48: 9705
    • 84a Zhao R, Chen X.-Y, Wang Z.-X. Org. Lett. 2021; 23: 1535
    • 84b Feng A, Liu Y, Yang Y, Zhu R, Zhang D. ACS Catal. 2022; 12: 2290
    • 85a Chen K, Que L. J. Am. Chem. Soc. 2001; 123: 6327
    • 85b Bartlett PD, Pincock RE, Rolston JH, Schindel W, Singer L. J. Am. Chem. Soc. 1965; 87: 2590
    • 86a Lane JF, Koch WT, Leeds NS, Gorin G. J. Am. Chem. Soc. 1952; 74: 3211
    • 86b Yamada K, Takada S, Nakamura S, Hirata NY. Tetrahedron 1968; 24: 199
  • 87 Kuriyama T, Schmidt TJ, Okuyama R, Ozoe Y. Bioorg. Med. Chem. 2002; 10: 1873
  • 88 Hung K, Condakes ML, Morikawa T, Maimone TJ. J. Am. Chem. Soc. 2016; 138: 16616
  • 89 Guo D.-X, Zhu R.-X, Wang X.-N, Wang L.-N, Wang S.-Q, Lin Z.-M, Lou H.-X. Org. Lett. 2010; 12: 4404
  • 90 Ye Q, Qu P, Snyder SA. J. Am. Chem. Soc. 2017; 139: 18428
  • 91 Hung K, Condakes ML, Novaes LF. T, Harwood SJ, Morikawa T, Yang Z, Maimone TJ. J. Am. Chem. Soc. 2019; 141: 3083
  • 92 Ma S.-G, Li M, Lin M.-B, Li L, Liu Y.-B, Qu J, Li Y, Wang X.-J, Wang R.-B, Xu S, Hou Q, Yu S.-S. Org. Lett. 2017; 19: 6160
  • 93 Burns AS, Rychnovsky SD. J. Am. Chem. Soc. 2019; 141: 13295
  • 94 Li C, Lee D, Graf TN, Phifer SS, Nakanishi Y, Burgess JP, Riswan S, Setyowati FM, Saribi AM, Soejarto A, Farnsworth NR, Falkinham JO, Kroll DJ, Kinghorn AD, Wani MC, Oberlies NH. Org. Lett. 2005; 7: 5709
    • 95a Wein LA, Wurst K, Angyal P, Weisheit L, Magauer T. J. Am. Chem. Soc. 2019; 141: 19589

    • For other total synthesis of (–)-mitrephorone A, see:
    • 95b Zhang X, King-Smith E, Dong L.-B, Yang L.-C, Rudolf JD, Shen B, Renata H. Science 2020; 369: 799
  • 96 Iglesias R, Diatta L. Rev. CENIC, Cienc. Fis. 1975; 6: 141
  • 97 Yoshida K, Okada K, Ueda H, Tokuyama H. Angew. Chem. Int. Ed. 2020; 59: 23089
  • 98 Chang S.-F, Yang L.-M, Hsu F.-L, Hsu J.-Y, Liaw J.-H, Lin S.-J. J. Nat. Prod. 2006; 69: 1450
  • 99 Ueoka R, Nakao Y, Kawatsu S, Yaegashi J, Matsumoto Y, Matsunaga S, Furihata K, van Soest RW. M, Fusetani N. J. Org. Chem. 2009; 74: 4203
  • 100 Rasik CM, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 14522
  • 101 Kim HI, Kisugi T, Khetkam P, Xie X, Yoneyama K, Uchida K, Yokota T, Nomura T, McErlean CS, Yoneyama K. Phytochemistry 2014; 103: 85
  • 102 Yasui M, Ota R, Tsukano C, Takemoto Y. Nat. Commun. 2017; 8: 674
  • 103 Mendoza A, Ishihara Y, Baran PS. Nat. Chem. 2012; 4: 21
    • 104a Heumann A, Åkermark B. Angew. Chem. Int. Ed. 1984; 23: 453
    • 104b Bäckvall JE, Nordberg RE. J. Am. Chem. Soc. 1981; 103: 4959
    • 104c Heumann A, Reglier M, Waegell B. Angew. Chem. Int. Ed. 1982; 21: 366
    • 104d Grennberg H, Bäckvall JE. Chem. Eur. J. 1998; 4: 1083
  • 105 Wilde NC, Isomura M, Mendoza A, Baran PS. J. Am. Chem. Soc. 2014; 136: 4909
  • 106 Du L, Robles AJ, King JB, Powell DR, Miller AN, Mooberry SL, Cichewicz RH. Angew. Chem. Int. Ed. 2014; 53: 804
  • 107 McClymont KS, Wang F.-Y, Minakar A, Baran PS. J. Am. Chem. Soc. 2020; 142: 8608